cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119712 a(n) is the smallest integer k such that the n-th (forward) difference of the partition sequence A000041 is positive from k onwards.

Original entry on oeis.org

0, 1, 6, 23, 64, 129, 222, 345, 502, 695, 924, 1193, 1502, 1853, 2246, 2687, 3172, 3705, 4286, 4917, 5600, 6333, 7118, 7957, 8848, 9797, 10800, 11861, 12978, 14153, 15386, 16681, 18034, 19447, 20922, 22459, 24060, 25723, 27448, 29239, 31094, 33015
Offset: 0

Views

Author

Moshe Shmuel Newman, Jun 11 2006

Keywords

Comments

The first entry is considered to be indexed by zero. For example, the third difference A072380 starts with -1,1 and continues alternating in sign till the 24th entry, from which point it is positive.
Using a different (backward) definition of the difference operator, this sequence has also been given as 1, 8, 26, 68, 134, 228, 352, ... A155861.

Crossrefs

Programs

  • Maple
    with(combinat): DD:= proc(p) proc(n) option remember; p(n+1) -p(n) end end: a:= proc(n) option remember; local f, k; if n=0 then 0 else f:= (DD@@n)(numbpart); for k from a(n-1) while not (f(k)>0 and f(k+1)>0) do od; k fi end: seq(a(n), n=0..20); # Alois P. Heinz, Jul 20 2009
  • Mathematica
    a[n_] := a[n] = Module[{f}, f[i_] = DifferenceDelta[PartitionsP[i], {i, n}]; For[j = 2, True, j++, If[f[j] > 0 && f[j+1] > 0, Return[j]]]];
    a[0] = 0; a[1] = 1;
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 04 2020 *)

Formula

Odlyzko gives an asymptotic formula a(n)~(6/(Pi)^2) * (n log n)^2

Extensions

a(11)-a(41) from Alois P. Heinz, Jul 20 2009