A119728 Primes p such that p+1, p+2, p+3 and p+4 have equal number of divisors.
241, 13781, 19141, 21493, 50581, 61141, 76261, 77431, 94261, 95383, 95413, 98101, 104743, 104869, 134581, 141653, 142453, 152629, 153991, 158341, 160933, 165541, 169111, 199831, 201511, 203431, 206551, 229351, 233941, 235111, 253013, 273367
Offset: 1
Keywords
Examples
241 is a term since 242, 243, 244 and 245 all have 6 divisors: {1,2,11,22,121,242},{1,3,9,27,81,243},{1,2,4,61,122,244} and {1,5,7,35,49,245}.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime@Range@50000,DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]==DivisorSigma[0,#+4]&]