A119731 f-Pascal's triangle where f(n) = n^3 = A000578(n).
1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 730, 1458, 730, 1, 1, 389017001, 3488380912, 3488380912, 389017001, 1, 1, 58871587162270593034051002, 42508286068210633669596761529, 84898828962096726153125421056, 42508286068210633669596761529, 58871587162270593034051002, 1
Offset: 0
Examples
Triangle begins; 1; 1, 1; 1, 2, 1; 1, 9, 9, 1; 1, 730, 1458, 730, 1; 1, 389017001, 3488380912, 3488380912, 389017001, 1;
Links
- G. C. Greubel, Rows n = 0..9 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, T[n-1, k]^3 + T[n-1, k-1]^3]]; Table[T[n, k], {n, 0, 7}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
-
Sage
@CachedFunction def T(n,k): if (k<0 or k>n): return 0 elif (k==0): return 1 else: return T(n-1, k)^3 + T(n-1, k-1)^3 flatten([[T(n,k) for k in (0..n)] for n in (0..7)]) # G. C. Greubel, Jul 19 2021
Formula
T(n,k) = T(n-1,k-1)^3 + T(n-1,k)^3 ; T(0,0) = 1 ; T(n,k) = 0 if k<0 or if k>n.