A119768 Twin prime pairs that sum to a power.
3, 5, 17, 19, 71, 73, 107, 109, 881, 883, 1151, 1153, 2591, 2593, 3527, 3529, 4049, 4051, 15137, 15139, 20807, 20809, 34847, 34849, 46817, 46819, 69191, 69193, 83231, 83233, 103967, 103969, 112337, 112339, 139967, 139969, 149057, 149059, 176417
Offset: 1
Examples
a(5) + a(6) = 71 + 73 = 144 = 12^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
egcd := proc(n::nonnegint) local L; if n=0 or n=1 then n else L:=ifactors(n)[2]; L:=map(z->z[2],L); igcd(op(L)) fi end: L:=[]: for w to 1 do for x from 1 to 2*12^2 do s:=6*x; for r from 2 to 79 do t:=s^r; if egcd(s)=1 and andmap(isprime,[(t-2)/2,(t+2)/2]) then print((t-2)/2,(t+2)/2,t)); L:=[op(L),[(t-2)/2,(t+2)/2,t]]; fi; od od od; L:=sort(L,(a,b)->a[1]op(z[1..2]),L);
-
Mathematica
powQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; aQ[n_] := PrimeQ[n] && PrimeQ[n + 2] && powQ[2 n + 2]; s = Select[Range[10^4], aQ]; Union @ Join[s, s + 2] (* Amiram Eldar, Jan 05 2020 *)
-
PARI
my(pp=3);forprime(p=5,180000,if(p-pp==2,if(ispower(p+pp),print1(pp,", ",p,", ")));pp=p) \\ Hugo Pfoertner, Jan 05 2020
Formula
If a(n) is the above sequence of twin primes, then a(2n-1),a(2n) is a twin prime pair and a(2n-1)+a(2n) is a power.
Extensions
a(1)-a(2) inserted by Amiram Eldar, Jan 05 2020
Comments