A119799 Numbers m such that m, m+1 and 2*m have the same number of distinct digits in decimal representation.
0, 1, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 56, 57, 58, 59, 61, 72, 83, 94, 100, 102, 103, 104, 105, 107, 108, 112, 113, 114, 116, 121, 123, 124, 125, 127, 128, 129, 134
Offset: 1
Examples
m=59: m, m+1 and 2*m are composed of two distinct digits: 59, 59+1=60 and 2*59=118: therefore 59 is a term.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a119799 n = a119799_list !! (n-1) a119799_list = i a119797_list a119798_list where i xs'@(x:xs) ys'@(y:ys) | x < y = i xs ys' | x > y = i xs' ys | otherwise = x : i xs ys -- Reinhard Zumkeller, Jan 04 2012
-
Mathematica
Select[Range[0,134],CountDistinct[IntegerDigits[#]]==CountDistinct[IntegerDigits[2#]]==CountDistinct[IntegerDigits[#+1]]&] (* James C. McMahon, Sep 19 2024 *)
Extensions
Offset fixed by Reinhard Zumkeller, Jan 04 2012
Comments