A119812 Decimal expansion of the constant defined by binary sums involving Beatty sequences: c = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n).
8, 5, 8, 2, 6, 7, 6, 5, 6, 4, 6, 1, 0, 0, 2, 0, 5, 5, 7, 9, 2, 2, 6, 0, 3, 0, 8, 4, 3, 3, 3, 7, 5, 1, 4, 8, 6, 6, 4, 9, 0, 5, 1, 9, 0, 0, 8, 3, 5, 0, 6, 7, 7, 8, 6, 6, 7, 6, 8, 4, 8, 6, 7, 8, 8, 7, 8, 4, 5, 5, 3, 7, 9, 1, 9, 1, 2, 1, 1, 1, 9, 5, 4, 8, 7, 0, 4, 9, 8, 2, 7, 6, 0, 6, 4, 3, 1, 5, 3, 1, 0, 2, 5, 2
Offset: 0
Examples
c = 0.858267656461002055792260308433375148664905190083506778667684867.. Continued fraction (A119813): c = [0;1,6,18,1032,16777344,288230376151842816,...] where partial quotients are given by: PQ[n] = 4^A000129(n-2) + 2^A001333(n-3) (n>2), with PQ[1]=0, PQ[2]=1. The following are equivalent expressions for the constant: (1) Sum_{n>=1} A049472(n)/2^n; A049472(n)=[n/sqrt(2)]; (2) Sum_{n>=1} 1/2^A001951(n); A001951(n)=[n*sqrt(2)]; (3) Sum_{n>=1} A080764(n)/2^n; A080764(n)=[(n+1)/sqrt(2)]-[n/sqrt(2)]; where [x] = floor(x). These series illustrate the above expressions: (1) c = 0/2^1 + 1/2^2 + 2/2^3 + 2/2^4 + 3/2^5 + 4/2^6 + 4/2^7 +... (2) c = 1/2^1 + 1/2^2 + 1/2^4 + 1/2^5 + 1/2^7 + 1/2^8 + 1/2^9 +... (3) c = 1/2^1 + 1/2^2 + 0/2^3 + 1/2^4 + 1/2^5 + 0/2^6 + 1/2^7 +...
Links
- W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
- P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
Crossrefs
Programs
-
PARI
{a(n)=local(t=sqrt(2)/2,x=sum(m=1,10*n,floor(m*t)/2^m));floor(10^n*x)%10}
Extensions
Removed leading zero and corrected offset R. J. Mathar, Feb 05 2009
Comments