cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A119817 Integer a(n) produces the least nonnegative integer coefficient of x^n in the n-th iteration of g.f. A(x).

Original entry on oeis.org

1, 1, -2, 8, -40, 210, -1032, 4074, -9084, -1485, -139344, -1178057, 97107644, 533077818, -43465435335, -997494915376, 35039558716800, 1885975569825115, -36684866143759995, -4946226556607087316, 24828007395162323458, 18213320246807011794109
Offset: 1

Views

Author

Paul D. Hanna, May 31 2006

Keywords

Examples

			The successive iterations of g.f. A(x) begin:
A(x) = (1)x + x^2 - 2x^3 + 8x^4 - 40x^5 + 210x^6 - 1032x^7 + 4074x^8+..
A(A(x)) = x + (2)x^2 - 2x^3 + 7x^4 - 30x^5 + 118x^6 -268x^7 -1430x^8+..
A(A(A(x))) = x + 3x^2 + (0)x^3 + 3x^4 -12x^5 +18x^6 +240x^7 -3119x^8+..
A(A(A(A(x)))) = x + 4x^2 + 4x^3 + (2)x^4 - 4x^5 - 18x^6 + 276x^7+...
A(A(A(A(A(x))))) = x + 5x^2 + 10x^3 + 10x^4 +(0)x^5 -20*x^6 +128*x^7+..
A(A(A(A(A(A(x)))))) = x + 6x^2 + 18x^3 +33x^4 +30x^5 +(0)x^6 -24x^7+..
Coefficients [x^n] of n-th iteration of A(x) forms A119818:
[1,2,0,2,0,0,0,0,0,0,0,10,0,0,7,12,0,6,0,9,2,11,0,8,10,13,18,18,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x+x^2+sum(k=3,n-1,a(k)*x^k),G=x+x*O(x^n)); if(n<1,0,if(n<=2,1, for(k=1,n,G=subst(F,x,G)); return((n-1-polcoeff(G,n,x)) )))}

A119816 Least positive integers that can appear as the coefficient of x^n the n-th iteration of an integer function F(x) where F(0)=0, for n>=1; the F(x) that satisfies this minimal condition is the g.f. of A119815.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 8, 3, 9, 11, 4, 13, 11, 14, 8, 17, 4, 19, 4, 1, 4, 23, 24, 5, 17, 27, 22, 29, 16, 31, 32, 24, 4, 30, 36, 37, 4, 36, 10, 41, 18, 43, 41, 17, 27, 47, 40, 28, 29, 7, 10, 53, 9, 1, 24, 49, 4, 59, 57, 61, 35, 31, 48, 39, 16, 67, 24, 51, 9, 71, 46, 73, 4, 56, 11, 55, 62, 79
Offset: 1

Views

Author

Paul D. Hanna, May 31 2006

Keywords

Comments

For prime p, a(p) = p; for all n>=1, 0 < a(n) <=n.

Examples

			Let F(x) = g.f. of A119815 = [1,1,-1,1,1,-11,23,-20,731,-4860,...],
then the coefficient of x^n in the n-th iteration of F(x)
forms [1,2,3,4,5,4,7,8,3,9,11,...], as illustrated by:
F(x) = (1)x + x^2 - x^3 + x^4 + x^5 - 11x^6 + 23x^7 - 20x^8 + 731x^9+..
F(F(x)) = x + (2)x^2 - 2x^4 + 6x^5 - 8x^6 - 50x^7 + 78x^8 + 1688x^9+...
F(F(F(x))) = x + 3x^2 + (3)x^3 - 3x^4 - x^5 + 17x^6 - 81x^7 -370x^8+...
F(F(F(F(x)))) = x + 4x^2 + 8x^3 + (4)x^4 - 12x^5 + 4x^6 + 12x^7 +...
F(F(F(F(F(x))))) = x + 5x^2 + 15x^3 + 25x^4 + (5)x^5 - 55x^6 -33x^7+...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 24x^3 + 66x^4 + 106x^5 + (4)x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=my(A=vector(n),B,F=x+x^2,G);if(n==1||n==2,n,A[1]=1;A[2]=1;B=A;B[2]=2; for(m=3,n,G=x+x*O(x^n);for(k=1,m,G=subst(F,x,G)); B[m]=polcoeff(G,m,x);A[m]=(m-B[m])\m;F=F+A[m]*x^m);return(B[n]+n*A[n]))}

Formula

a(n) = [x^n] F_n(x) where F_n(x) = F_{n-1}(F(x)) such that F(x) = g.f. of A119815 causes {a(n)} to be the least positive integers.
Showing 1-2 of 2 results.