A119851 Triangle read by rows: T(n,k) is the number of ternary words of length n containing k 012's (n >= 0, 0 <= k <= floor(n/3)).
1, 3, 9, 26, 1, 75, 6, 216, 27, 622, 106, 1, 1791, 387, 9, 5157, 1350, 54, 14849, 4566, 267, 1, 42756, 15102, 1179, 12, 123111, 49113, 4833, 90, 354484, 157622, 18798, 536, 1, 1020696, 500520, 70317, 2775, 15, 2938977, 1575558, 255231, 13068, 135
Offset: 0
Examples
T(4,1)=6 because we have 0012, 0120, 0121, 0122, 1012 and 2012. Triangle starts: 1; 3; 9; 26, 1; 75, 6; 216, 27; 622, 106, 1;
Programs
-
Maple
G:=1/(1-3*z+z^3-t*z^3): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 15 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 15 do seq(coeff(P[n],t,j),j=0..floor(n/3)) od; # yields sequence in triangular form
-
PARI
{ T(n,k) = sum(j=0,n-3*k, if((n-3*k-j)%2,0, binomial(-(k-1),j) * binomial(j,(n-3*k-j)/2) * (-3)^((3*j+3*k-n)/2) )) } \\ Max Alekseyev
Formula
T(n,k) = Sum_{j=0..n-3k} binomial(-(k-1),j) * binomial(j,(n-3k-j)/2) * (-3)^((3j+3k-n)/2). - Max Alekseyev
G.f.: G(t,z) = 1/(1-3z+z^3-tz^3).
Recurrence relation: T(n,k) = 3*T(n-1,k) - T(n-3,k) + T(n-3,k-1) for n >= 3.
Comments