cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119851 Triangle read by rows: T(n,k) is the number of ternary words of length n containing k 012's (n >= 0, 0 <= k <= floor(n/3)).

Original entry on oeis.org

1, 3, 9, 26, 1, 75, 6, 216, 27, 622, 106, 1, 1791, 387, 9, 5157, 1350, 54, 14849, 4566, 267, 1, 42756, 15102, 1179, 12, 123111, 49113, 4833, 90, 354484, 157622, 18798, 536, 1, 1020696, 500520, 70317, 2775, 15, 2938977, 1575558, 255231, 13068, 135
Offset: 0

Views

Author

Emeric Deutsch, May 26 2006

Keywords

Comments

Row n has 1+floor(n/3) terms.
Sum of entries in row n is 3^n (A000244).
Sum_{k>=0} k*T(n,k) = (n-2)*3^(n-3) = A027741(n-1).

Examples

			T(4,1)=6 because we have 0012, 0120, 0121, 0122, 1012 and 2012.
Triangle starts:
    1;
    3;
    9;
   26,   1;
   75,   6;
  216,  27;
  622, 106, 1;
		

Crossrefs

Cf. A000244, A076264 (=T(n,0)), A119852 (=T(n,1)), A027741.

Programs

  • Maple
    G:=1/(1-3*z+z^3-t*z^3): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 15 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 15 do seq(coeff(P[n],t,j),j=0..floor(n/3)) od; # yields sequence in triangular form
  • PARI
    { T(n,k) = sum(j=0,n-3*k, if((n-3*k-j)%2,0, binomial(-(k-1),j) *
    binomial(j,(n-3*k-j)/2) * (-3)^((3*j+3*k-n)/2) )) } \\ Max Alekseyev

Formula

T(n,k) = Sum_{j=0..n-3k} binomial(-(k-1),j) * binomial(j,(n-3k-j)/2) * (-3)^((3j+3k-n)/2). - Max Alekseyev
G.f.: G(t,z) = 1/(1-3z+z^3-tz^3).
Recurrence relation: T(n,k) = 3*T(n-1,k) - T(n-3,k) + T(n-3,k-1) for n >= 3.