cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119856 Number of equicolorable (unrooted) trees on 2n nodes.

Original entry on oeis.org

1, 1, 3, 9, 37, 168, 895, 5097, 30983, 196096, 1283552, 8621364, 59176966, 413613891, 2936303012, 21128390679, 153841228779, 1131941424480, 8406680733066, 62958726953945, 475074493277317, 3609405128045162, 27593870865196624, 212159118489924538, 1639760091688265416
Offset: 1

Views

Author

N. J. A. Sloane, Aug 04 2006

Keywords

Comments

For precise definition, recurrence and asymptotics see the Pippenger reference.

Crossrefs

Programs

  • PARI
    \\ R is b.g.f of rooted trees x nodes, y in one part
    R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2,1,y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A};
    seq(n)={my(A=Pol(R(n))); my(r(x,y)=substvec(A, ['x,'y], [x,y/x])); Vec(polcoeff((r(x,y/x) + r(y/x,x) - r(x,y/x)*r(y/x,x)), 0) + O(y*y^n) + r(y,y))/2} \\ Andrew Howroyd, May 23 2018

Formula

a(n) = (A000081(n) + A119857(n))/2. - Andrew Howroyd, May 21 2018

Extensions

a(8)-a(9) from John P. McSorley, Aug 08 2017
Terms a(10) and beyond from Andrew Howroyd, May 21 2018