A119856 Number of equicolorable (unrooted) trees on 2n nodes.
1, 1, 3, 9, 37, 168, 895, 5097, 30983, 196096, 1283552, 8621364, 59176966, 413613891, 2936303012, 21128390679, 153841228779, 1131941424480, 8406680733066, 62958726953945, 475074493277317, 3609405128045162, 27593870865196624, 212159118489924538, 1639760091688265416
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- Austin Mohr, Unlabeled Trees
- N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115.
Programs
-
PARI
\\ R is b.g.f of rooted trees x nodes, y in one part R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2,1,y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A}; seq(n)={my(A=Pol(R(n))); my(r(x,y)=substvec(A, ['x,'y], [x,y/x])); Vec(polcoeff((r(x,y/x) + r(y/x,x) - r(x,y/x)*r(y/x,x)), 0) + O(y*y^n) + r(y,y))/2} \\ Andrew Howroyd, May 23 2018
Formula
Extensions
a(8)-a(9) from John P. McSorley, Aug 08 2017
Terms a(10) and beyond from Andrew Howroyd, May 21 2018
Comments