cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119861 Number of distinct prime factors of the odd Catalan numbers A038003(n).

Original entry on oeis.org

0, 1, 3, 6, 11, 20, 36, 64, 117, 209, 381, 699, 1291, 2387, 4445, 8317, 15645, 29494, 55855, 106021, 201778, 384941, 735909, 1409683, 2705277, 5200202
Offset: 1

Views

Author

Alexander Adamchuk, Jul 31 2006, Oct 11 2007

Keywords

Comments

A038003[n] = A000108[2^n-1] = binomial(2^(n+1)-2, 2^n-1)/(2^n). a(1) = 0 because A038003[1] = 1. a(2) = 1 because A038003[2] = 5. a(3) = 3 because A038003[3] = 429 = 3*11*13. a(4) = 6 because A038003[4] = 9694845 = 3^2*5*17*19*23*29.
Odd Catalan numbers are listed in A038003[n] = A000108[2^n-1] = binomial(2^(n+1)-2, 2^n-1)/(2^n).

Crossrefs

Cf. A000108 = Catalan Number. Cf. A038003 = Odd Catalan numbers. Cf. A120274, A120275, A119908, A094389.

Programs

  • Maple
    with(numtheory): c:=proc(n) options operator, arrow: binomial(2*n, n)/(n+1) end proc: seq(nops(factorset(c(2^n-1))),n=1..15); # Emeric Deutsch, Oct 24 2007
  • Mathematica
    Table[Length[FactorInteger[Binomial[2^(n+1)-2, 2^n-1]/(2^n)]],{n,1,15}]
  • Python
    from sympy import factorint
    A119861_list, c, s = [0], {}, 3
    for n in range(2,2**19):
        for p,e in factorint(4*n-2).items():
            if p in c:
                c[p] += e
            else:
                c[p] = e
        for p,e in factorint(n+1).items():
            if c[p] == e:
                del c[p]
            else:
                c[p] -= e
        if n == s:
            A119861_list.append(len(c))
            s = 2*s+1 # Chai Wah Wu, Feb 12 2015

Formula

a(n) = Length[ FactorInteger[ Binomial[ 2^(n+1)-2, 2^n-1] / (2^n) ]].

Extensions

a(16)-a(18) from Robert G. Wilson v, May 15 2007
a(19)-a(26) from Chai Wah Wu, Feb 12 2015