A119861 Number of distinct prime factors of the odd Catalan numbers A038003(n).
0, 1, 3, 6, 11, 20, 36, 64, 117, 209, 381, 699, 1291, 2387, 4445, 8317, 15645, 29494, 55855, 106021, 201778, 384941, 735909, 1409683, 2705277, 5200202
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Catalan Number.
Crossrefs
Programs
-
Maple
with(numtheory): c:=proc(n) options operator, arrow: binomial(2*n, n)/(n+1) end proc: seq(nops(factorset(c(2^n-1))),n=1..15); # Emeric Deutsch, Oct 24 2007
-
Mathematica
Table[Length[FactorInteger[Binomial[2^(n+1)-2, 2^n-1]/(2^n)]],{n,1,15}]
-
Python
from sympy import factorint A119861_list, c, s = [0], {}, 3 for n in range(2,2**19): for p,e in factorint(4*n-2).items(): if p in c: c[p] += e else: c[p] = e for p,e in factorint(n+1).items(): if c[p] == e: del c[p] else: c[p] -= e if n == s: A119861_list.append(len(c)) s = 2*s+1 # Chai Wah Wu, Feb 12 2015
Formula
a(n) = Length[ FactorInteger[ Binomial[ 2^(n+1)-2, 2^n-1] / (2^n) ]].
Extensions
a(16)-a(18) from Robert G. Wilson v, May 15 2007
a(19)-a(26) from Chai Wah Wu, Feb 12 2015
Comments