cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119891 Prime trio leaders: largest number of a prime trio.

Original entry on oeis.org

29, 47, 83, 137, 173, 191, 227, 263, 281, 317, 353, 443, 461, 599, 641, 797, 821, 887, 911, 977, 1019, 1091, 1109, 1163, 1181, 1217, 1307, 1361, 1433, 1451, 1499, 1523, 1613, 1697, 1721, 1787, 1811, 1877, 1901, 1949, 2027, 2063, 2081, 2153, 2207, 2243
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 27 2006

Keywords

Comments

A prime trio is a set of three distinct prime numbers such that the third number is a 1-digit number which is the sum of the digits of the second number and the second number is the sum of the digits of the first number.

Examples

			443 is in the sequence because it is the largest number of the prime trio (443, 11, 2).
599 is the first term with sum of digits different from 11 (cf. A106754), namely 23 (cf. A106762). This sequence contains also all primes with sum of digits equal to 41, 43, 61 etc., but not 29, 47, ... since the second digit sum must be a single-digit prime, i.e., 2, 3, 5 or 7. - _M. F. Hasler_, Mar 09 2022
		

Crossrefs

Subsequence of A304367.
Cf. A000040 (primes), A007953 (sum of digits), A106754 (primes with s.o.d. = 11), A106762 (s.o.d.(p) = 23), A106774 (s.o.d.(p) = 41), A106775 (s.o.d.(p) = 43), A106787 (s.o.d.(p) = 61): subsequences.

Programs

  • Maple
    filter:= proc(n) local x,y;
      if not isprime(n) then return false fi;
      x:= convert(convert(n,base,10),`+`);
      if x < 10 or not isprime(x) then return false fi;
      y:= convert(convert(x,base,10),`+`);
      member(y,{2,3,5,7})
    end proc:
    select(filter, [seq(i,i=11..10000,2)]); # Robert Israel, May 21 2021
  • Mathematica
    ptQ[n_]:=Module[{c=NestList[Total[IntegerDigits[#]]&,n,2]},Length[ Union[c]] == 3&&And@@PrimeQ[c]]; Select[Prime[Range[500]],ptQ] (* Harvey P. Dale, Aug 15 2012 *)
  • PARI
    select( {is_A119891(n, s=sumdigits(n))=bittest(172, sumdigits(s)) && isprime(s) && s>9 && isprime(n)}, primes([1,2345])) \\ M. F. Hasler, Mar 09 2022