A119947 Triangle of numerators in the square of the matrix A[i,j] = 1/i for j <= i, 0 otherwise.
1, 3, 1, 11, 5, 1, 25, 13, 7, 1, 137, 77, 47, 9, 1, 49, 29, 19, 37, 11, 1, 363, 223, 153, 319, 107, 13, 1, 761, 481, 341, 743, 533, 73, 15, 1, 7129, 4609, 3349, 2509, 1879, 275, 191, 17, 1, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 121, 19, 1, 83711, 55991, 42131, 32891, 25961
Offset: 1
Examples
The rationals are [1]; [3/4, 1/4]; [11/18, 5/18, 1/9]; [25/48, 13/48, 7/48, 1/16]; ... See the W. Lang link for more. From _Clark Kimberling_, Aug 13 2012: (Start) As a triangle given by f(n,m) = Sum_{h=m..n} 1/h, the first six rows are: 1 3 1 11 5 1 25 13 7 1 137 77 47 9 1 49 29 19 37 11 1 363 223 153 319 107 13 1 (End)
Links
- Wolfdieter Lang, First ten rows and rationals.
Crossrefs
Programs
-
Mathematica
f[n_, m_] := Numerator[Sum[1/k, {k, m, n}]] Flatten[Table[f[n, m], {n, 1, 10}, {m, 1, n}]] TableForm[Table[f[n, m], {n, 1, 10}, {m, 1, n}]] (* Clark Kimberling, Aug 13 2012 *)
-
PARI
A119947_upto(n)={my(M=matrix(n,n,i,j,(j<=i)/i)^2);vector(n,r,apply(numerator,M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019
Formula
a(i,j) = numerator(r(i,j)) with r(i,j):=(A^2)[i,j], where the matrix A has elements a[i,j] = 1/i if j<=i, 0 if j>i, (lower triangular).
Extensions
Edited by M. F. Hasler, Nov 05 2019
Comments