A119955 Numbers n such that denominator of n-th Harmonic Number equals denominator of n-th Alternative Harmonic Number.
1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 27, 49, 50, 51, 52, 53, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 289, 290, 291, 292, 293, 841, 842, 843, 844
Offset: 1
Keywords
Examples
Denominators of Harmonic Number (H[n] = Sum[1/i, {i, n}]) are A002805[n] = {1,2,6,12,60,20,140,280,2520,2520,27720,27720,360360,360360,360360,...}. Denominators of Alternative Harmonic Number (H'[n] = Sum[(-1)^(i+1)*1/i, {i, n}]) are A058312[n] = {1,2,6,12,60,60,420,840,2520,2520,27720,27720,360360,360360,72072,...}. a(1) = 1 because A002805[1] = A058312[1]. 15 is not in a(n) because A002805[15] = 360360 is not equal to A058312[15] = 72072.
Links
- Eric Weisstein's World of Mathematics, Harmonic Number.
Programs
-
Mathematica
Do[s1=Denominator[Sum[(-1)^(i+1)*1/i, {i, n}]]; s2=Denominator[Sum[1/i, {i, n}]]; If[Equal[s2, s1], Print[n]], {n, 1, 1500}]
Comments