A119997 Sum of all matrix elements of n X n matrix M[i,j] = (-1)^(i+j)*Fibonacci[i+j-1].
1, 1, 4, 5, 17, 32, 97, 225, 628, 1573, 4225, 10880, 28769, 74849, 196708, 513765, 1347025, 3523360, 9229441, 24154625, 63251156, 165571781, 433507969, 1134881280, 2971250497, 7778684737, 20365103812, 53316141125, 139584105233, 365434903328, 956722661665
Offset: 1
Examples
Matrix begins: 1 -1 2 -3 5 -1 2 -3 5 -8 2 -3 5 -8 13 -3 5 -8 13 -21 5 -8 13 -21 34
Links
- Colin Barker, Table of n, a(n) for n = 1..1000 [Terms up to n=200 from _Vincenzo Librandi_]
- Index entries for linear recurrences with constant coefficients, signature (3,1,-7,5,-1).
Crossrefs
Programs
-
Mathematica
Table[Sum[Sum[(-1)^(i+j)*Fibonacci[i+j-1],{i,1,n}],{j,1,n}],{n,1,50}]
-
PARI
a(n) = sum(i=1, n, sum(j=1, n, (-1)^(i+j)*fibonacci(i+j-1))) \\ Colin Barker, Mar 26 2015
-
PARI
Vec(-x*(x^3+2*x-1)/((x-1)*(x^2-3*x+1)*(x^2-x-1)) + O(x^100)) \\ Colin Barker, Mar 26 2015
Formula
a(n) = Sum[Sum[(-1)^(i+j)*Fibonacci[i+j-1],{i,1,n}],{j,1,n}].
a(n) = 3*a(n-1)+a(n-2)-7*a(n-3)+5*a(n-4)-a(n-5) for n>5. - Colin Barker, Mar 26 2015
G.f.: -x*(x^3+2*x-1) / ((x-1)*(x^2-3*x+1)*(x^2-x-1)). - Colin Barker, Mar 26 2015
Comments