A119999 Number of partitions of n into parts that occur in decimal representation as substrings of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 8, 6, 5, 5, 4, 4, 4, 4, 2, 12, 2, 5, 8, 4, 6, 3, 5, 3, 2, 12, 7, 2, 4, 4, 8, 3, 3, 6, 2, 12, 12, 5, 2, 4, 5, 3, 8, 3, 2, 12, 7, 5, 4, 2, 3, 3, 3, 3, 2, 12, 12, 12, 7, 4, 2, 3, 4, 5, 2, 12, 7, 5, 4, 4, 3, 2, 3, 3, 2, 12, 12, 5, 12, 4, 5, 3, 2, 3, 2, 12, 7, 12, 4, 4, 7, 3
Offset: 0
Examples
a(98) = #{98, 10*9+8, 2*9+10*8} = 3; a(99) = #{99, 11*9} = 2; a(100) = #{100, 10*10, 9*10+10*1, 8*10+20*1, 7*10+30*1, 6*10+40*1, 5*10+50*1, 4*10+60*1, 3*10+70*1, 2*10+80*1, 10+90*1, 100*1} = 12; a(101) = #{101, 10*10+1, 9*10+11*1, 8*10+21*1, 7*10+31*1, 6*10+41*1, 5*10+51*1, 4*10+61*1, 3*10+71*1, 2*10+81*1, 10+91*1, 101*1} = 12; a(102) = #{102, 10*10+2, 10*10+2*1, 9*10+6*2, ...} = 298.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
import Data.List (isInfixOf) a119999 n = p (filter ((`isInfixOf` show n) . show) [1..n]) n where p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m | m < k = 0 | otherwise = p ks' (m - k) + p ks m -- Reinhard Zumkeller, Aug 14 2011
Comments