cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120019 Square table, read by antidiagonals, of self-compositions of A120010.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 2, 1, 4, 9, 10, 6, 1, 5, 16, 30, 32, 18, 1, 6, 25, 68, 114, 116, 53, 1, 7, 36, 130, 312, 480, 440, 158, 1, 8, 49, 222, 710, 1536, 2157, 1708, 481, 1, 9, 64, 350, 1416, 4070, 8000, 10092, 6760, 1491, 1, 10, 81, 520, 2562, 9348, 24365, 43472, 48525
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

The g.f. of row n is the composition: (1-sqrt(1-4*x))/2 o x/(1-nx) o (x-x^2).

Examples

			Square table begins:
1, 1, 1, 2, 6, 18, 53, 158, 481, 1491, ...
1, 2, 4, 10, 32, 116, 440, 1708, 6760, 27232, ...
1, 3, 9, 30, 114, 480, 2157, 10092, 48525, 238143, ...
1, 4, 16, 68, 312, 1536, 8000, 43472, 243808, 1400448, ...
1, 5, 25, 130, 710, 4070, 24365, 151330, 968785, 6355795, ...
1, 6, 36, 222, 1416, 9348, 63768, 448188, 3234216, 23875296, ...
1, 7, 49, 350, 2562, 19236, 148085, 1167488, 9409645, 77367087, ...
1, 8, 64, 520, 4304, 36320, 312512, 2740672, 24476800, 222358528, ...
1, 9, 81, 738, 6822, 64026, 610245, 5906502, 58033953, 578488563, ...
1, 10, 100, 1010, 10320, 106740, 1117880, 11855660, 127313320, ...
Successive self-compositions of F(x), the g.f. of A120010, begin:
F(x) = x + x^2 + x^3 + 2x^4 + 6x^5 + 18x^6 + 53x^7 + 158x^8 +...
F(F(x)) = x + 2x^2 + 4x^3 + 10x^4 + 32x^5 + 116x^6 + 440x^7 +...
F(F(F(x))) = x + 3x^2 + 9x^3 + 30x^4 + 114x^5 + 480x^6 + 2157x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + 68x^4 + 312x^5 + 1536x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 130x^4 + 710x^5 + 4070x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 + 222x^4 + 1416x^5 + 9348x^6 +...
		

Crossrefs

Rows: A120010, A120017, A120018; Diagonals: A120020, A120021. Variant: A120013.

Programs

  • PARI
    {T(n,k)=sum(j=1, k, binomial(2*k-2*j, k-j)/(k-j+1)* sum(i=1, j,(-1)^(j-i)*binomial(k-j+i, j-i)*binomial(k-j+i-1, i-1)*n^(i-1)))}

Formula

T(n, k) = Sum_{j=1..k}Catalan(k-j)*[Sum_{i=1..j}(-1)^(j-i)*n^(i-1)*C(k-j+i, j-i)*C(k-j+i-1, i-1)]; Also, T(n, k) = Sum_{j=0..k-1}n^j*[Sum_{i=j..k-1}(-1)^(i-j)*Catalan(k-i-1)*C(k-i+j, i-j)*C(k-i+j-1, j)]; where Catalan(n) = A000108(n) = C(2n, n)/(n+1).

A120014 Coefficients of x^n in the n-th iteration of the g.f. of A120009, so that: a(n) = [x^n] { (x-x^2) o x/(1-n*x) o (1-sqrt(1-4*x))/2 } for n>=1.

Original entry on oeis.org

1, 2, 9, 60, 530, 5892, 79681, 1276760, 23729310, 502780580, 11974950746, 316917570312, 9230453871756, 293492484431720, 10117826259791025, 375952605020796720, 14980065429077943734, 637215061582781559972
Offset: 1

Views

Author

Paul D. Hanna, Jun 07 2006, Jun 09 2006

Keywords

Comments

a(n) is divisible by n for n>=1; a(n)/n = A120016(n).
Main diagonal of table (A120013) of iterations of A120009.

Examples

			Successive iterations of F(x), the g.f. of A120009, begin:
F(x) = (1)x + x^2 + x^3 - 6x^5 - 33x^6 - 143x^7 - 572x^8 - 2210x^9 +...
F(F(x)) = x + (2)x^2 + 4x^3 + 6x^4 - 4x^5 - 100x^6 - 664x^7 +...
F(F(F(x))) = x + 3x^2 + (9)x^3 + 24x^4 + 42x^5 - 87x^6 - 1575x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + (60)x^4 + 192x^5 + 360x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 120x^4 + (530)x^5 +1955x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 +210x^4 +1164x^5 + (5892)x^6 +...
		

Crossrefs

Cf. A120016 (a(n)/n); A120009, A127275 (g.f.=F(F(x))), A120012 (g.f.=F(F(F(x)))); A000108 (Catalan); A120015, A120020, A120013.

Programs

  • PARI
    a(n)=local(k=n,x=X+X^3*O(X^n));polcoeff( x*((1-k+k^2)-k^2*(k+1)*x-k*(1-(k+2)*x)*(1-sqrt(1-4*x))/2/x)/(1-k+k^2*x)^2,n,X)
    
  • PARI
    /* Generated as the n-th self-composition of A120009: */ a(n)=local(F=((1-3*x)*sqrt(1-4*x+x^3*O(x^n)) - (1-x)*(1-4*x))/(2*x^2), G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))
    
  • PARI
    a(n)=n^(n-1)-sum(k=2,n-2,n^(k-1)*k*(k-1)*(n-k-1)*(2*n-k-2)!/(n-k)!)/n!

Formula

a(n) = [x^n] x*((1-n+n^2) - n^2*(n+1)*x - n*(1-(n+2)*x)*C(x) )/(1-n+n^2*x)^2, where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).
a(n) = n^(n-1) - Sum_{k=2..n-2} n^(k-1)*k*(k-1)*(n-k-1)*(2*n-k-2)!/(n-k)!/n!
Showing 1-2 of 2 results.