cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A120020 Coefficients of x^n in the n-th iteration of the g.f. of A120010: a(n) = [x^n] { (1-sqrt(1-4*x))/2 o x/(1-n*x) o (x-x^2) } for n>=1.

Original entry on oeis.org

1, 2, 9, 68, 710, 9348, 148085, 2740672, 58033953, 1383923040, 36705564368, 1071911496576, 34179790156473, 1181725089179936, 44035415728886145, 1759481180119564288, 75042973200676887772, 3402984761691650083008
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

Main diagonal of A120019, the table of self-compositions of A120010.
For n>=1, n divides a(n): a(n)/n = A120022(n).

Examples

			Successive iterations of F(x), the g.f. of A120010, begin:
F(x) = (1)x + x^2 + x^3 + 2x^4 + 6x^5 + 18x^6 + 53x^7 + 158x^8 +...
F(F(x)) = x + (2)x^2 + 4x^3 + 10x^4 + 32x^5 + 116x^6 + 440x^7 +...
F(F(F(x))) = x + 3x^2 + (9)x^3 + 30x^4 + 114x^5 + 480x^6 + 2157x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + (68)x^4 + 312x^5 + 1536x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 130x^4 + (710)x^5 + 4070x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 + 222x^4 + 1416x^5 + (9348)x^6+..
		

Crossrefs

Programs

  • PARI
    {a(n)=sum(j=1, n, binomial(2*n-2*j, n-j)/(n-j+1)* sum(i=1, j,(-1)^(j-i)*binomial(n-j+i, j-i)*binomial(n-j+i-1, i-1)*n^(i-1)))}
    for(n=1,25,print1(a(n),", "))

Formula

a(n) = Sum_{j=1..n} Catalan(n-j) * [ Sum_{i=1..j} (-1)^(j-i) * n^(i-1) * C(n-j+i, j-i) * C(n-j+i-1, i-1) ];
a(n) = Sum_{j=0..n-1} n^j * [ Sum_{i=j..n-1} (-1)^(i-j) * Catalan(n-i-1) * C(n-i+j, i-j) * C(n-i+j-1, j) ], where Catalan(n) = A000108(n) = C(2n, n)/(n+1).

A120019 Square table, read by antidiagonals, of self-compositions of A120010.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 2, 1, 4, 9, 10, 6, 1, 5, 16, 30, 32, 18, 1, 6, 25, 68, 114, 116, 53, 1, 7, 36, 130, 312, 480, 440, 158, 1, 8, 49, 222, 710, 1536, 2157, 1708, 481, 1, 9, 64, 350, 1416, 4070, 8000, 10092, 6760, 1491, 1, 10, 81, 520, 2562, 9348, 24365, 43472, 48525
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

The g.f. of row n is the composition: (1-sqrt(1-4*x))/2 o x/(1-nx) o (x-x^2).

Examples

			Square table begins:
1, 1, 1, 2, 6, 18, 53, 158, 481, 1491, ...
1, 2, 4, 10, 32, 116, 440, 1708, 6760, 27232, ...
1, 3, 9, 30, 114, 480, 2157, 10092, 48525, 238143, ...
1, 4, 16, 68, 312, 1536, 8000, 43472, 243808, 1400448, ...
1, 5, 25, 130, 710, 4070, 24365, 151330, 968785, 6355795, ...
1, 6, 36, 222, 1416, 9348, 63768, 448188, 3234216, 23875296, ...
1, 7, 49, 350, 2562, 19236, 148085, 1167488, 9409645, 77367087, ...
1, 8, 64, 520, 4304, 36320, 312512, 2740672, 24476800, 222358528, ...
1, 9, 81, 738, 6822, 64026, 610245, 5906502, 58033953, 578488563, ...
1, 10, 100, 1010, 10320, 106740, 1117880, 11855660, 127313320, ...
Successive self-compositions of F(x), the g.f. of A120010, begin:
F(x) = x + x^2 + x^3 + 2x^4 + 6x^5 + 18x^6 + 53x^7 + 158x^8 +...
F(F(x)) = x + 2x^2 + 4x^3 + 10x^4 + 32x^5 + 116x^6 + 440x^7 +...
F(F(F(x))) = x + 3x^2 + 9x^3 + 30x^4 + 114x^5 + 480x^6 + 2157x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + 68x^4 + 312x^5 + 1536x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 130x^4 + 710x^5 + 4070x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 + 222x^4 + 1416x^5 + 9348x^6 +...
		

Crossrefs

Rows: A120010, A120017, A120018; Diagonals: A120020, A120021. Variant: A120013.

Programs

  • PARI
    {T(n,k)=sum(j=1, k, binomial(2*k-2*j, k-j)/(k-j+1)* sum(i=1, j,(-1)^(j-i)*binomial(k-j+i, j-i)*binomial(k-j+i-1, i-1)*n^(i-1)))}

Formula

T(n, k) = Sum_{j=1..k}Catalan(k-j)*[Sum_{i=1..j}(-1)^(j-i)*n^(i-1)*C(k-j+i, j-i)*C(k-j+i-1, i-1)]; Also, T(n, k) = Sum_{j=0..k-1}n^j*[Sum_{i=j..k-1}(-1)^(i-j)*Catalan(k-i-1)*C(k-i+j, i-j)*C(k-i+j-1, j)]; where Catalan(n) = A000108(n) = C(2n, n)/(n+1).

A120022 a(n) = A120020(n)/n = coefficient of x^n in the n-th self-composition of the g.f. of A120010, divided by n, for n>=1.

Original entry on oeis.org

1, 1, 3, 17, 142, 1558, 21155, 342584, 6448217, 138392304, 3336869488, 89325958048, 2629214627421, 84408934941424, 2935694381925743, 109967573757472768, 4414292541216287516, 189054708982869449056
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[((-1)^(j-i) n^(i-2) Binomial[2n-2j, n-j] Binomial[n+i-j, j-i] Binomial[n+i-j-1, i-1])/(n-j+1), {j, 1, n}, {i, 1, j}]; Array[a, 18] (* Jean-François Alcover, Nov 14 2016 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x*(1-x)/(1-(n+1)*x*(1-x)+x*O(x^n))))/2, n)/n
    
  • PARI
    /* Alternate Formula: */ a(n)=sum(j=1, n, binomial(2*n-2*j, n-j)/(n-j+1)* sum(i=1, j,(-1)^(j-i)*binomial(n-j+i, j-i)*binomial(n-j+i-1, i-1)*n^(i-2)))
Showing 1-3 of 3 results.