cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120060 Triangle read by rows: T(n,k) is the number of Dyck n-paths (A000108) whose longest sawtooth has size k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 7, 5, 1, 1, 0, 19, 16, 5, 1, 1, 0, 53, 54, 18, 5, 1, 1, 0, 153, 187, 64, 18, 5, 1, 1, 0, 453, 653, 233, 66, 18, 5, 1, 1, 0, 1367, 2302, 859, 243, 66, 18, 5, 1, 1, 0, 4191, 8174, 3189, 906, 245, 66, 18, 5, 1, 1
Offset: 0

Views

Author

David Callan, Jun 06 2006

Keywords

Comments

A sawtooth in a Dyck path is a subpath of the form (UD)^k with k>=1 (U=upstep, D=downstep). The longest sawtooth in the Dyck path UududUududDUDD has size 2; there are two of them, indicated by lowercase letters.

Examples

			Table begins
\ k..0....1....2....3....4....5....6....7
n
0 |..1
1 |..0....1
2 |..0....1....1
3 |..0....3....1....1
4 |..0....7....5....1....1
5 |..0...19...16....5....1....1
6 |..0...53...54...18....5....1....1
7 |..0..153..187...64...18....5....1....1
a(3,1)=3 because the Dyck 3-paths whose longest sawtooth has size 1 are
UUUDDD, UUDDUD, UDUUDD.
		

Crossrefs

Cf. A120059. Column k=1 is A078481. Row sums are the Catalan numbers A000108.

Programs

  • Mathematica
    Clear[a,b,c] (* a[n,k] is the number of Dyck n-paths whose longest sawtooth has size <=k, b[n,k] is the number of Dyck n-paths that start UU whose longest sawtooth has size <=k, c[n,k] is the number of Dyck n-paths that start UD whose longest sawtooth has size <=k *) catalanNumber[n_] := 1/(n+1)Binomial[2n,n] a[0,k_]/;k>=0 := 1; a[1,k_]/;k>=1 := 1; a[n_,0]/;n>=1 := 0; a[n_,k_]/;k<0 := 0; b[1,k_]/;k>=0 := 0; c[1,k_]/;k>=1 := 1; b[n_,k_] := a[n,k] - c[n,k] c[n_,k_]/;1<=k<=n-1 := c[n,k] = Sum[b[n-j,k],{j,k}] c[n_,k_]/;k>=n>=1 := catalanNumber[n-1]; a[n_,k_]/;k>=n>=0 := catalanNumber[n]; a[n_,k_]/;k==n-1 := catalanNumber[n]-1; a[n_,k_]/;1<=k<=n-2 && n>=3 := a[n,k] = Sum[b[n-j,k],{j,k}] + Sum[a[j-1,k]a[n-j,k],{j,2,n}] Table[a[n,k]-a[n,k-1],{n,0,8},{k,0,n}]

Formula

Generating function for column k>=1 is F[k]-F[k-1] where F[k]:=(Sum[x^j,{j,0,k+1}]-Sqrt[Sum[x^j,{j,0,k+1}]^2] - 4x Sum[x^j,{j,0,k}]^2)/ (2x Sum[x^j,{j,0,k}]).