A120088 Numerators of partial sums of a series for sqrt(2).
3, 11, 23, 179, 365, 1439, 2911, 46147, 93009, 369605, 743409, 5917879, 11887761, 47365319, 95064943, 3032383331, 6082445497, 24264959593, 48649328861, 388310999293, 778263028691, 3106935548009, 6225306416473, 99433372856743, 199189221750317, 795541400400905
Offset: 0
Examples
Rationals r(n): [3/2, 11/8, 23/16, 179/128, 365/256, 1439/1024, 2911/2048, 46147/32768,...]
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- W. Lang, Rationals r(n).
Crossrefs
Programs
-
Magma
[Numerator(1 + (&+[(-1/4)^k*Binomial(2*k,k)/(2*(k+1)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, Mar 27 2018
-
Mathematica
r[n_]:= 1+Sum[(-1/4)^k*CatalanNumber[k]/2, {k, 0, n}]; Numerator[Table[ r[n], {n, 0, 50}]] (* G. C. Greubel, Mar 27 2018 *)
-
PARI
{r(n) = 1 + sum(k=0,n, (-1/4)^k*binomial(2*k,k)/(2*(k+1)))}; for(n=0,30, print1(numerator(r(n)), ", ")) \\ G. C. Greubel, Mar 27 2018
Formula
a(n) = numerator(r(n)), with the rationals defined above.
Comments