cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120088 Numerators of partial sums of a series for sqrt(2).

Original entry on oeis.org

3, 11, 23, 179, 365, 1439, 2911, 46147, 93009, 369605, 743409, 5917879, 11887761, 47365319, 95064943, 3032383331, 6082445497, 24264959593, 48649328861, 388310999293, 778263028691, 3106935548009, 6225306416473, 99433372856743, 199189221750317, 795541400400905
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Involving alternating sums over scaled Catalan numbers, A000108(k)/4^k.
From the expansion of sqrt(1+x) = 1 + x*(Sum_{k>=0} C(k)*(-x/4)^k)/2, valid for |x|<=1, one finds for x=+1: sqrt(2) = 1 + (Sum_{k>=0} (-1)^k*C(k)/4^k)/2.
The denominators are given by 2*A120777(n).
The rationals r(n):=1 + (Sum_{k=0..n} (-1)^k*C(k)/4^k)/2, with the Catalan numbers C(n)=A000108(n), are A120088(n)/(2*A120777(n)), n>=0.

Examples

			Rationals r(n): [3/2, 11/8, 23/16, 179/128, 365/256, 1439/1024, 2911/2048, 46147/32768,...]
		

Crossrefs

For similar partial sums with positive terms (not alternating) see rationals A119951/A120069.
For the partial sums (Sum_{k=0..n} (-1)^k*C(k)/4^k) see A120788(n)/A120777(n).

Programs

  • Magma
    [Numerator(1 + (&+[(-1/4)^k*Binomial(2*k,k)/(2*(k+1)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, Mar 27 2018
  • Mathematica
    r[n_]:= 1+Sum[(-1/4)^k*CatalanNumber[k]/2, {k, 0, n}]; Numerator[Table[ r[n], {n, 0, 50}]] (* G. C. Greubel, Mar 27 2018 *)
  • PARI
    {r(n) = 1 + sum(k=0,n, (-1/4)^k*binomial(2*k,k)/(2*(k+1)))};
    for(n=0,30, print1(numerator(r(n)), ", ")) \\ G. C. Greubel, Mar 27 2018
    

Formula

a(n) = numerator(r(n)), with the rationals defined above.