A120089 Square perimeters of primitive Pythagorean triangles.
144, 900, 3136, 8100, 17424, 23716, 33124, 43264, 54756, 57600, 93636, 115600, 139876, 144400, 166464, 174724, 207936, 213444, 244036, 298116, 304704, 357604, 414736, 422500, 476100, 490000, 541696, 571536, 640000, 722500, 746496, 756900
Offset: 1
Keywords
Links
Crossrefs
Cf. A120090.
Programs
-
Maple
isA024364 := proc(an) local r::integer,s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r,s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : isA120089 := proc(an) RETURN( issqr(an) and isA024364(an)) ; end: for n from 2 to 1200 do if isA120089(n^2) then printf("%d,",n^2) ; fi ; od ; # R. J. Mathar, Jun 08 2006
-
Mathematica
A078926[n_] := Sum[Boole[n < d^2 < 2n && CoprimeQ[d, n/d]], {d, Divisors[n/2^IntegerExponent[n, 2]]}]; Reap[For[k = 2, k <= 10^6, k += 2, If[A078926[k/2] > 0 && IntegerQ@Sqrt@k, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2023 *)
Formula
a(n) = (2*u*v)^2, where u=sqrt(j/2) and v=sqrt(j+k) {for coprime pairs (j,k),j>k with odd k such that pairs (u,v),u
Extensions
Corrected and extended by R. J. Mathar, Jun 08 2006
Comments