cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120091 Ordered values j of pairs (j,k) that generate A120090.

Original entry on oeis.org

8, 18, 32, 50, 72, 98, 98, 128, 128, 162, 162, 200, 200, 242, 242, 242, 288, 288, 288, 338, 338, 338, 338, 392, 392, 392, 450, 450, 512, 512, 512, 512, 512, 578, 578, 578, 578, 578, 648, 648, 648, 722, 722, 722, 722, 722, 722, 800, 800, 800, 800, 800, 882, 882, 882
Offset: 1

Views

Author

Lekraj Beedassy, Jun 07 2006

Keywords

Extensions

a(14)-a(55) from Charlie Neder, Feb 11 2019

A120089 Square perimeters of primitive Pythagorean triangles.

Original entry on oeis.org

144, 900, 3136, 8100, 17424, 23716, 33124, 43264, 54756, 57600, 93636, 115600, 139876, 144400, 166464, 174724, 207936, 213444, 244036, 298116, 304704, 357604, 414736, 422500, 476100, 490000, 541696, 571536, 640000, 722500, 746496, 756900
Offset: 1

Views

Author

Lekraj Beedassy, Jun 07 2006

Keywords

Comments

Square entries of A024364.

Crossrefs

Cf. A120090.

Programs

  • Maple
    isA024364 := proc(an) local r::integer,s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r,s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : isA120089 := proc(an) RETURN( issqr(an) and isA024364(an)) ; end: for n from 2 to 1200 do if isA120089(n^2) then printf("%d,",n^2) ; fi ; od ; # R. J. Mathar, Jun 08 2006
  • Mathematica
    A078926[n_] := Sum[Boole[n < d^2 < 2n && CoprimeQ[d, n/d]], {d, Divisors[n/2^IntegerExponent[n, 2]]}];
    Reap[For[k = 2, k <= 10^6, k += 2, If[A078926[k/2] > 0 && IntegerQ@Sqrt@k, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2023 *)

Formula

a(n) = (2*u*v)^2, where u=sqrt(j/2) and v=sqrt(j+k) {for coprime pairs (j,k),j>k with odd k such that pairs (u,v),u
a(n) = A024364(k) = A000290(j) for some k and j. - R. J. Mathar, Jun 08 2006

Extensions

Corrected and extended by R. J. Mathar, Jun 08 2006
Showing 1-2 of 2 results.