cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120166 a(n) = 8 + floor((2 + Sum_{j=1..n-1} a(j))/4).

Original entry on oeis.org

8, 10, 13, 16, 20, 25, 31, 39, 49, 61, 76, 95, 119, 149, 186, 232, 290, 363, 454, 567, 709, 886, 1108, 1385, 1731, 2164, 2705, 3381, 4226, 5283, 6603, 8254, 10318, 12897, 16121, 20152, 25190, 31487, 39359, 49199
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Magma
    function f(n, a, b)
      t:=0;
        for k in [1..n-1] do
          t+:= a+Floor((b+t)/4);
        end for;
      return t;
    end function;
    g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >;
    A120166:= func< n | g(n, 8, 2) >;
    [A120166(n): n in [1..60]]; // G. C. Greubel, Sep 09 2023
    
  • Mathematica
    f[n_, p_, q_]:= f[n,p,q]= p +Quotient[q +Sum[f[k,p,q], {k,n-1}], 4];
    A120166[n_]:= f[n,8,2];
    Table[A120166[n], {n, 60}] (* G. C. Greubel, Sep 09 2023 *)
  • SageMath
    @CachedFunction
    def f(n, p, q): return p + (q +sum(f(k, p, q) for k in range(1, n)))//4
    def A120166(n): return f(n, 8, 2)
    [A120166(n) for n in range(1, 61)] # G. C. Greubel, Sep 09 2023