cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120211 x values giving the smallest integer solutions of y^2 = x*(a^N - x)*( b^N + x) (elliptic curve, Weierstrass equation) with a and b legs in primitive Pythagorean triangles and N = 2. Sequence ordered in increasing values of leg a. Relevant y values in A120210.

Original entry on oeis.org

4, 6, 12, 24, 15, 40, 60, 40, 70, 84, 72, 56, 126, 144, 180, 168, 198, 180, 220, 264, 126, 286, 312, 364, 360, 390, 420, 480, 510, 49, 544, 300, 612, 616, 646, 684, 720, 760, 288, 798, 840, 924, 726, 966, 700, 1012, 1104, 990, 1150, 1200
Offset: 1

Views

Author

Giorgio Balzarotti, Paolo P. Lava, Jun 10 2006

Keywords

Examples

			First primitive Pythagorean triad: 3, 4, 5
Weierstrass equation. y^2 = x*( 3^2 - x)*( 4^2 + x)
Smallest integer solution (x, y) = (4,20)
First element in the sequence x = 4
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 47.

Crossrefs

Programs

  • Maple
    flag :=1;x:=0; # a, b, c primitive Pythagorean triad while flag =1 do x:=x+1; y2:= x*( a^2 - x)*(x+b^2); if ((floor(sqrt(y2)))^2=y2)then print( x);flag :=0;fi; od;