A120211 x values giving the smallest integer solutions of y^2 = x*(a^N - x)*( b^N + x) (elliptic curve, Weierstrass equation) with a and b legs in primitive Pythagorean triangles and N = 2. Sequence ordered in increasing values of leg a. Relevant y values in A120210.
4, 6, 12, 24, 15, 40, 60, 40, 70, 84, 72, 56, 126, 144, 180, 168, 198, 180, 220, 264, 126, 286, 312, 364, 360, 390, 420, 480, 510, 49, 544, 300, 612, 616, 646, 684, 720, 760, 288, 798, 840, 924, 726, 966, 700, 1012, 1104, 990, 1150, 1200
Offset: 1
Keywords
Examples
First primitive Pythagorean triad: 3, 4, 5 Weierstrass equation. y^2 = x*( 3^2 - x)*( 4^2 + x) Smallest integer solution (x, y) = (4,20) First element in the sequence x = 4
References
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 47.
Programs
-
Maple
flag :=1;x:=0; # a, b, c primitive Pythagorean triad while flag =1 do x:=x+1; y2:= x*( a^2 - x)*(x+b^2); if ((floor(sqrt(y2)))^2=y2)then print( x);flag :=0;fi; od;