A120249 Numerator of cfenc[n] (see definition in comments).
1, 2, 3, 3, 5, 5, 8, 4, 4, 8, 13, 7, 21, 13, 7, 5, 34, 7, 55, 11, 11, 21, 89, 9, 7, 34, 5, 18, 144, 12, 233, 6, 18, 55, 12, 10, 377, 89, 29, 14, 610, 19, 987, 29, 9, 144, 1597, 11, 11, 11, 47, 47, 2584, 9, 19, 23, 76, 233, 4181, 17, 6765, 377, 14, 7, 31, 31, 10946, 76, 123, 19
Offset: 1
Examples
a(2646) = numerator[cfenc[2646]]= numerator[cfenc[2^1 * 3^3 * 7^2]] = numerator[FromContinuedFraction[{2; 4, 1, 3}]] = numerator[2 + 1/(4 + 1/(1 + 1/3))] = numerator[42/19] = 42. From _Antti Karttunen_, Oct 29 2019: (Start) a(6) = 3 because 6 = 2^1 * 3^1, and the numerator of the continued fraction 1+1 + 1/(1+1) = 5/2 is 5. a(12) = 7 because 12 = 2^2 * 3^1, and the numerator of the continued fraction 2+1 + 1/(1+1) = 7/2 is 7. a(15) = 7 because 15 = 2^0 * 3^1 * 5^1, and the numerator of the continued fraction 0+1 + 1/(1+1 + 1/(1+1)) = 1 + 1/(2 + 1/2) = 1 + 2/5 = 7/5 is 7. (End)
Links
- Hans Havermann, Table of n, a(n) for n = 1..10000
- Wikipedia, Continued fraction
Crossrefs
Programs
-
Mathematica
Table[If[n == 1, 1, (fl = FactorInteger[n]; pq = Table[1, {i, 1, PrimePi[Last[fl][[1]]]}]; While[Length[fl] > 0, pp = First[fl]; fl = Drop[fl, 1]; pq[[PrimePi[pp[[1]]]]] = pp[[2]] + 1;]; Numerator[FromContinuedFraction[pq]])],{n,1,80}]
-
PARI
A120249(n) = if(1==n,n, my(pi=primepi(vecmax(factor(n)[, 1])), cf=1+valuation(n,prime(pi))); pi--; while(pi, cf = (1+valuation(n,prime(pi)))+(1/cf); pi--); numerator(cf)); \\ Antti Karttunen, Oct 26 2019
Formula
a(2^k) = k+1.
From Antti Karttunen, Oct 29 2019: (Start)
The following formula employs Gauss's notation for continued fractions (see the section "Notations" in the Wikipedia-article), for example, K_{i=1..3} u(i) stands for 1/(u(1) + 1/(u(2) + 1/u(3))):
Let c(n) = A001511(n) + K_{i=2..A061395(n)} 1/(1+A286561(n,A000040(i))). Then a(n) is the numerator of c(n), and A120250(n) is the denominator of c(n).
(End)
Comments