A120250 Denominator of cfenc(n) (see definition in comments).
1, 1, 2, 1, 3, 2, 5, 1, 3, 3, 8, 2, 13, 5, 5, 1, 21, 3, 34, 3, 8, 8, 55, 2, 4, 13, 4, 5, 89, 5, 144, 1, 13, 21, 7, 3, 233, 34, 21, 3, 377, 8, 610, 8, 7, 55, 987, 2, 7, 4, 34, 13, 1597, 4, 11, 5, 55, 89, 2584, 5, 4181, 144, 11, 1, 18, 13, 6765, 21, 89, 7, 10946, 3, 17711, 233, 7, 34
Offset: 1
Examples
a(2646) = denominator(cfenc(2646)) = denominator(cfenc(2^1 * 3^3 * 7^2)) = denominator(FromContinuedFraction[{2; 4, 1, 3}]) = denominator(2 + 1/(4 + 1/(1 + 1/3))) = denominator(42/19) = 19.
Links
- Hans Havermann, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[If[n == 1, 1, (fl = FactorInteger[n]; pq = Table[1, {i, 1, PrimePi[Last[fl][[1]]]}]; While[Length[fl] > 0, pp = First[fl]; fl = Drop[fl, 1]; pq[[PrimePi[pp[[1]]]]] = pp[[2]] + 1;]; Denominator[FromContinuedFraction[pq]])],{n,1,80}]
Formula
a(2^k) = 1.
a(prime(n)) = Fibonacci(n+1).
Comments