A120258 Triangle of central coefficients of generalized Pascal-Narayana triangles.
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 20, 20, 4, 1, 1, 70, 175, 50, 5, 1, 1, 252, 1764, 980, 105, 6, 1, 1, 924, 19404, 24696, 4116, 196, 7, 1, 1, 3432, 226512, 731808, 232848, 14112, 336, 8, 1, 1, 12870, 2760615, 24293412, 16818516, 1646568, 41580, 540, 9, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 6, 3, 1; 1, 20, 20, 4, 1; 1, 70, 175, 50, 5, 1; 1, 252, 1764, 980, 105, 6, 1; 1, 924, 19404, 24696, 4116, 196, 7, 1; ...
Links
- Seiichi Manyama, Rows n = 0..100, flattened
Programs
-
PARI
T(n, k) = prod(j=0, k-1, binomial(2*n-2*k+j, n-k)/binomial(n-k+j, j)); \\ Seiichi Manyama, Apr 02 2021
Formula
Number triangle T(n, k)=[k<=n]*Product{j=0..k-1, C(2n-2k+j, n-k)/C(n-k+j, j)}
As a square array, this is T(n,m)=product{k=1..m, product{j=1..n, product{i=1..n, (i+j+k-1)/(i+j+k-2)}}}; - Paul Barry, May 13 2008
Comments