cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120259 Row sums of number triangle A120258.

Original entry on oeis.org

1, 2, 4, 11, 46, 302, 3109, 49345, 1209058, 45574112, 2636237374, 234854695297, 32081882854399, 6733481882732516, 2172532761103119601, 1074257501384373622001, 816914977299535380309346, 953227711986515337529688144, 1706089496424625166250326935690
Offset: 0

Views

Author

Paul Barry, Jun 13 2006

Keywords

Crossrefs

Cf. A120258.

Programs

  • Mathematica
    Table[Sum[Product[Binomial[2*n-2*k+j, n-k]/Binomial[n-k+j, j],{j,0,k-1}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 02 2021 *)
    Table[Sum[BarnesG[k+1] * BarnesG[n-k+1]^2 * BarnesG[2*n-k+1] / BarnesG[2*n-2*k+1], {k, 0, n}] / BarnesG[n+1]^2, {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2021 *)

Formula

a(n) = sum{k=0..n, Product{j=0..k-1, C(2n-2k+j, n-k)/C(n-k+j, j)}}
Limit_{n->infinity} a(n)^(1/n^2) = r^(r/2) * (2-r)^(1 - r/2) = 1.238819877352130037160235229707224180528582190767293210626357503368..., where r = 0.370130616271672149875211085663371877443670059442239590157339853950... is the root of the equation (4 - 4*r)^(2 - 2*r) * r^r = (2-r)^(2-r). - Vaclav Kotesovec, Apr 02 2021