cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120258 Triangle of central coefficients of generalized Pascal-Narayana triangles.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 20, 20, 4, 1, 1, 70, 175, 50, 5, 1, 1, 252, 1764, 980, 105, 6, 1, 1, 924, 19404, 24696, 4116, 196, 7, 1, 1, 3432, 226512, 731808, 232848, 14112, 336, 8, 1, 1, 12870, 2760615, 24293412, 16818516, 1646568, 41580, 540, 9, 1
Offset: 0

Views

Author

Paul Barry, Jun 13 2006

Keywords

Comments

Columns are the central coefficients of the triangles T(n, k;r) with T(n, k;r)=Product{j=0..r, C(n+j, k+j)/C(n-k+j, j)}*[k<=n]; (r=0,A007318), (r=1;A001263),(r=2,A056939),(r=3,A056940),(r=4,A056941). Essentially A103905 as a number triangle with an extra diagonal of 1's. Central coefficients T(2n, n) are A008793. Row sums are A120259. Diagonal sums are A120260.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   2,     1;
  1,   6,     3,     1;
  1,  20,    20,     4,    1;
  1,  70,   175,    50,    5,   1;
  1, 252,  1764,   980,  105,   6, 1;
  1, 924, 19404, 24696, 4116, 196, 7, 1;
  ...
		

Crossrefs

Row sums give A120259.

Programs

  • PARI
    T(n, k) = prod(j=0, k-1, binomial(2*n-2*k+j, n-k)/binomial(n-k+j, j)); \\ Seiichi Manyama, Apr 02 2021

Formula

Number triangle T(n, k)=[k<=n]*Product{j=0..k-1, C(2n-2k+j, n-k)/C(n-k+j, j)}
As a square array, this is T(n,m)=product{k=1..m, product{j=1..n, product{i=1..n, (i+j+k-1)/(i+j+k-2)}}}; - Paul Barry, May 13 2008

A343032 Row sums of triangle A073165.

Original entry on oeis.org

1, 2, 4, 9, 24, 78, 313, 1557, 9606, 73482, 696736, 8187149, 119214337, 2150935400, 48085463503, 1331903411529, 45708405952786, 1943464419169294, 102378212255343442, 6681679619583450775, 540264005909352759970, 54120992439329583459008, 6716802027097934788929023
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Product[(n - k + i + j - 1)/(i + j - 1), {i, 1, k}, {j, 1, i}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2021 *)
    Table[Sum[BarnesG[k+1] / BarnesG[n+1] * Sqrt[Gamma[k+1] * Gamma[(n-k+2)/2] * BarnesG[n-k+1] * BarnesG[n+k+2] / (Gamma[n-k+1] * Gamma[(n+k+2)/2] * BarnesG[2*k+2])], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2021 *)
  • PARI
    a(n) = sum(k=0, n, prod(i=1, k, prod(j=1, i, (n-k+i+j-1)/(i+j-1))));

Formula

a(n) = Sum_{k=0..n} Product_{1<=i<=j<=k} (n-k+i+j-1)/(i+j-1).
Limit_{n->infinity} a(n)^(1/n^2) = 2^r * r^(r/2) * (1-r)^((1-r)/2) = 1.113022855718664043805172905388731078607920794227951582456470883692074109..., where r = 0.62986938372832785012478891433662812255632994055776040984266... is the root of the equation 2^(4*r) * (1-r)^(1-r) * r^(2*r) = (1+r)^(1+r). - Vaclav Kotesovec, Apr 03 2021
Showing 1-2 of 2 results.