cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120287 Numerator of 1/n^3 + 2/(n-1)^3 + 3/(n-2)^3 +...+ (n-1)/2^3 + n.

Original entry on oeis.org

1, 17, 355, 7715, 203413, 492527, 49601051, 1823359051, 16684019407, 186004308017, 22757931053507, 298630937704541, 50872538998767329, 51223731720255509, 103063783892301061, 7045407930432340853
Offset: 1

Views

Author

Alexander Adamchuk, Jul 07 2006

Keywords

Comments

p divides a(p-1) and a(p-2) for prime p>3.
Numerators of the Eulerian numbers T(-3,k) for k = 0,1..., if T(n,k) is extended to negative n by the recurrence T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) (indexed as in A173018). - Michael J. Collins, Oct 10 2024

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[Sum[1/i^3,{i,1,k}],{k,1,n}],{n,1,25}]]

Formula

a(n) = numerator[Sum[Sum[1/i^3,{i,1,k}],{k,1,n}]].