cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120291 Numerator of determinant of n X n matrix with elements M[i,j] = (1+Prime[i])/Prime[i] if i=j and 1 otherwise.

Original entry on oeis.org

3, 1, 11, 3, 29, 1, 59, 1, 101, 1, 1, 3, 239, 47, 1, 191, 21, 251, 569, 64, 1, 12, 25, 482, 1061, 1, 1, 98, 1481, 797, 1721, 926, 3, 8, 3, 1214, 1, 458, 1, 1544, 99, 1724, 1213, 1916, 1, 2, 1, 3, 4889, 853, 5351, 1, 49, 3041, 2113, 3301, 6871, 3571, 2473, 10, 2661
Offset: 1

Views

Author

Alexander Adamchuk, Jul 08 2006, Aug 19 2006

Keywords

Comments

Many a(n), such as 3,11,29,59,101,239,569,1061,1481,1721,4889.., are primes of form p(1)+...+p(k)+1 where p(i) =i-th prime A053845. It appeares that all primes of this form are presented in a(n) in their natural order.
Indices n such that a(n) = 1 are {2,6,8,10,11,15,21,26,27,37,39,45,47,52,75,84,87,88,91,94,...} = A121744[n] Numbers n such that (1 + Sum[Prime[k],{k,1,n}]) = (1 + A007504[n]) divides primorial number p(n)# = Product[Prime[k],{k,1,n}] = A002110[n].

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Det[DiagonalMatrix[Table[1/Prime[i],{i,1,n}]]+1],{n,1,70}]]
    Table[Numerator[(1+Sum[Prime[k],{k,1,n}])/Product[Prime[k],{k,1,n}]],{n,1,100}]

Formula

a(n) = numerator[Det[DiagonalMatrix[Table[1/Prime[i],{i,1,n}]]+1]].
a(n) = Numerator[ (1 + Sum[ Prime[k], {k,1,n} ]) / Product[ Prime[k], {k,1,n} ] ]. a(n) = Numerator[ (1 + A007504[n]) / A002110[n] ].