A120333 Number of monocyclic skeletons with n carbon atoms and a ring size of 5.
1, 1, 4, 9, 28, 71, 198, 521, 1418, 3773, 10153, 27114, 72705, 194531, 521447, 1397482, 3749836, 10067417, 27057233, 72779710, 195963184, 528127752, 1424707167, 3846943003, 10397057771, 28125235102, 76149287981, 206351312858, 559642013499, 1519019192097
Offset: 5
Keywords
Examples
If n=10 then the number of monocyclic skeletons with ring size of five is 71.
References
- Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
Links
- Andrew Howroyd, Table of n, a(n) for n = 5..200
Crossrefs
Column k=5 of A305059.
Programs
-
Mathematica
G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]]; T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]]; a[n_] := T[n + 5, 5]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
Extensions
More terms from N. J. A. Sloane, Aug 27 2006
Terms a(26) and beyond from Andrew Howroyd, May 24 2018