cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120333 Number of monocyclic skeletons with n carbon atoms and a ring size of 5.

Original entry on oeis.org

1, 1, 4, 9, 28, 71, 198, 521, 1418, 3773, 10153, 27114, 72705, 194531, 521447, 1397482, 3749836, 10067417, 27057233, 72779710, 195963184, 528127752, 1424707167, 3846943003, 10397057771, 28125235102, 76149287981, 206351312858, 559642013499, 1519019192097
Offset: 5

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

Examples

			If n=10 then the number of monocyclic skeletons with ring size of five is 71.
		

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

Crossrefs

Column k=5 of A305059.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    a[n_] := T[n + 5, 5];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)

Extensions

More terms from N. J. A. Sloane, Aug 27 2006
Terms a(26) and beyond from Andrew Howroyd, May 24 2018