A120336 Number of solutions (x,y) of Diophantine equation y^2 = x*(a^N - x)*(b^N + x) (Weierstrass elliptic equation) with a and b legs in primitive Pythagorean triangles and N = 2. Sequence ordered in increasing values of leg "a".
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1
Keywords
Examples
First primitive Pythagorean triad: 3, 4, 5. Weierstrass equation: y^2 = x*(3^2 - x)*(4^2 + x). Unique integer solution: (x,y) = (4,20). First element in the sequence: 1. Fifth primitive Pythagorean triad: 8, 15, 17. Integer solutions: (x,y) = (15, 420) and (30, 510). Fifth element in the sequence: 2.
Programs
-
Maple
# a,b,c primitive Pythagorean triad n_sol:=0; for x from 1 by 1 to a^2 do y2:= x*( a^2 - x)*( x+ b^2); if ((floor(sqrt(y2)))^2=y2) n_sol:=n_sol+1;fi; print(n_sol) ; od;
Comments