A120398 Sums of two distinct prime cubes.
35, 133, 152, 351, 370, 468, 1339, 1358, 1456, 1674, 2205, 2224, 2322, 2540, 3528, 4921, 4940, 5038, 5256, 6244, 6867, 6886, 6984, 7110, 7202, 8190, 9056, 11772, 12175, 12194, 12292, 12510, 13498, 14364, 17080, 19026, 24397, 24416, 24514
Offset: 1
Examples
2^3+3^3=35=a(1), 2^3+5^3=133=a(2), 3^3+5^3=152=a(3), 2^3+7^3=351=a(4).
Links
- M. F. Hasler and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 284 terms from Hasler)
- Index to sequences related to sums of cubes.
Crossrefs
Subsequence of A024670.
Programs
-
Mathematica
Select[Sort[ Flatten[Table[Prime[n]^3 + Prime[k]^3, {n, 15}, {k, n - 1}]]], # <= Prime[15^3] &]
-
PARI
isA030078(n)=n==round(sqrtn(n,3))^3 && isprime(round(sqrtn(n,3))) \\ M. F. Hasler, Apr 13 2008
-
PARI
isA120398(n)={ n%2 & return(isA030078(n-8)); n<35 & return; forprime( p=ceil( sqrtn( n\2+1,3)),sqrtn(n-26.5,3), isA030078(n-p^3) & return(1))} \\ M. F. Hasler, Apr 13 2008
-
PARI
for( n=1,10^6, isA120398(n) & print1(n",")) \\ - M. F. Hasler, Apr 13 2008
-
PARI
list(lim)=my(v=List()); lim\=1; forprime(q=3,sqrtnint(lim-8,3), my(q3=q^3); forprime(p=2,min(sqrtnint(lim-q3,3),q-1), listput(v,p^3+q3))); Set(v) \\ Charles R Greathouse IV, Mar 31 2022
Comments