cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A130873 Sums of two distinct prime 4th powers.

Original entry on oeis.org

97, 641, 706, 2417, 2482, 3026, 14657, 14722, 15266, 17042, 28577, 28642, 29186, 30962, 43202, 83537, 83602, 84146, 85922, 98162, 112082, 130337, 130402, 130946, 132722, 144962, 158882, 213842, 279857, 279922, 280466, 282242, 294482, 308402
Offset: 1

Views

Author

Jonathan Vos Post, Jul 24 2007

Keywords

Comments

This is to 4th powers as A120398 is to cubes.

Crossrefs

Programs

  • Mathematica
    Select[Sort[ Flatten[Table[Prime[n]^4 + Prime[k]^4, {n, 15}, {k, n - 1}]]], # <= Prime[15^4] &]
    Total/@Subsets[Prime[Range[10]]^4,{2}]//Union (* Harvey P. Dale, Oct 20 2024 *)

A138854 Numbers which are the sum of three cubes of distinct primes.

Original entry on oeis.org

160, 378, 476, 495, 1366, 1464, 1483, 1682, 1701, 1799, 2232, 2330, 2349, 2548, 2567, 2665, 3536, 3555, 3653, 3871, 4948, 5046, 5065, 5264, 5283, 5381, 6252, 6271, 6369, 6587, 6894, 6992, 7011, 7118, 7137, 7210, 7229, 7235, 7327, 7453, 8198, 8217, 8315
Offset: 1

Views

Author

M. F. Hasler, Apr 13 2008

Keywords

Comments

This is a subsequence of A024975. The odd terms of this sequence are A138853, the even terms are 8+{ even terms of A120398 }. Thus primes in this sequence, A137365, are the same as primes in A138853.

Crossrefs

Cf. A024975 (a^3+b^3+c^3, a>b>c>0), A138853 (odd terms of this), A120398, A137365 (primes in A138853 / A138854).

Programs

  • Maple
    isA030078 := proc(n)
        local f ;
        if n < 8 then
            false;
        else
            f := ifactors(n)[2] ;
            if nops(f) = 1 and op(2,op(1,f)) = 3 then
                true;
            else
                false;
            end if;
        end if;
    end proc:
    isA138854 := proc(n)
        local i,j,p,q,r,rcub ;
        for i from 1 do
            p := ithprime(i) ;
            if p^3+(p+1)^3+(p+2)^3 > n then
                return false;
            end if;
            for j from i+1 do
                q := ithprime(j) ;
                rcub := n-q^3-p^3 ;
                if rcub <= q^3 then
                    break;
                fi ;
                if isA030078(rcub) then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 5 do
        if isA138854(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Jun 09 2014
  • Mathematica
    f[upto_]:=Module[{maxp=PrimePi[Floor[Power[upto, (3)^-1]]]}, Select[Union[Total/@(Subsets[Prime[Range[maxp]],{3}]^3)],#<=upto&]]; f[9000]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    isA138854(n)={ if( n%2, isA138853(n), isA120398(n-8)) }
    for( n=1,10^4, isA138854(n) & print1(n", "))

Formula

A138854 = { p(i)^3+p(j)^3+p(k)^3 ; i>j>k>0 } = A138853 union { p(i)^3+p(j)^3+8 ; i>j>1}

A130555 Numbers that are sums of sixth powers of two distinct primes.

Original entry on oeis.org

793, 15689, 16354, 117713, 118378, 133274, 1771625, 1772290, 1787186, 1889210, 4826873, 4827538, 4842434, 4944458, 6598370, 24137633, 24138298, 24153194, 24255218, 25909130, 28964378, 47045945, 47046610, 47061506, 47163530
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Comments

This is to 6th powers as A130292 is to fifth powers, A130873 is to 4th powers and A120398 is to cubes. These can never be prime, as sixth powers are cubes and the sum of cubes factorizations applies. There are semiprimes for values beginning a(1) = 793, a(2) = 15689 = 29 * 541, a(4) = 117713 = 53 * 2221, a(11) = 4826873 = 173 * 27901.

Examples

			a(1) = prime(1)^6 + prime(2)^6 = 2^6 + 3^6 = 64 + 729 = 793 = 13 * 61.
		

Crossrefs

Programs

  • Mathematica
    Select[Sort[Flatten[Table[Prime[n]^6 + Prime[k]^6, {n, 15}, {k, n - 1}]]], # <= Prime[15^6] &]
    Union[Total/@Subsets[Prime[Range[20]]^6,{2}]] (* Harvey P. Dale, Mar 11 2012 *)

Formula

{A001014(A000040(i)) + A001014(A000040(j)) for i > j}.

A132214 Numbers that are sums of seventh powers of two distinct primes.

Original entry on oeis.org

2315, 78253, 80312, 823671, 825730, 901668, 19487299, 19489358, 19565296, 20310714, 62748645, 62750704, 62826642, 63572060, 82235688, 410338801, 410340860, 410416798, 411162216, 429825844, 473087190, 893871867, 893873926
Offset: 1

Views

Author

Jonathan Vos Post, Aug 13 2007

Keywords

Comments

This is to 7th powers as A130555 is to 6th powers, A130292 is to fifth powers, A130873 is to 4th powers and A120398 is to cubes. These can never be prime, as the polynomial x^7 + y^7 factors over Z. Note however that A132215, which is the analog for eighth powers, can be prime, as seen also in A132216.

Examples

			a(1) = 2^7 + 3^7 = 2315 = 5 * 463.
		

Crossrefs

Programs

  • Maple
    P:= select(isprime, [2,seq(i,i=3..100,2)]): nP:= nops(P):
    N:= 2^7 + P[-1]^7:
    sort(convert(select(`<=`, {seq(seq(P[i]^7+P[j]^7,j=i+1..nP),i=1..nP-1)},N),list)); # Robert Israel, Jul 01 2024
  • Mathematica
    Select[Sort[ Flatten[Table[Prime[n]^7 + Prime[k]^7, {n, 15}, {k, n - 1}]]], # <= Prime[15^7] &]
    Union[Total/@(Subsets[Prime[Range[10]],{2}]^7)] (* Harvey P. Dale, Jan 03 2012 *)

Formula

{A001015(A000040(i)) + A001015(A000040(j)) for i > j}.

A138853 Numbers which are the sum of 3 cubes of distinct odd primes.

Original entry on oeis.org

495, 1483, 1701, 1799, 2349, 2567, 2665, 3555, 3653, 3871, 5065, 5283, 5381, 6271, 6369, 6587, 7011, 7137, 7229, 7235, 7327, 7453, 8217, 8315, 8441, 8533, 9083, 9181, 9399, 10387, 11799, 11897, 12115, 12319, 12537, 12635, 13103, 13525, 13623, 13841
Offset: 1

Views

Author

M. F. Hasler, Apr 13 2008

Keywords

Comments

Dropping the restriction to odd primes would add to this sequence of odd terms the sequence of even terms of the form 8+p(i)^3+p(j)^3 (i>j>1), i.e. 8+{ even terms of A120398 }, cf. A138854.

Crossrefs

Cf. A024975 (a^3+b^3+c^3, a>b>c>0), A138854, A120398.

Programs

  • PARI
    isA138853(n)= local( c,d); n>494 && forprime( p=floor( sqrtn( n\3+1,3))+1, floor( sqrtn( n-151,3)), d=n-p^3; forprime( q=floor( sqrtn( d\2+1,3))+1, min( p-1, floor( sqrtn( d-26,3))), round( sqrtn( c=d-q^3,3 ))^3==c || next; isprime( round( sqrtn( c,3 ))) && return(1)))
    forstep(n=3^3+5^3+7^3,10^5,2, isA138853(n)&print1(n", "))

Formula

A138853={ p(i)^3+p(j)^3+p(k)^3 ; i>j>k>1 }

A130292 Numbers that are sums of fifth powers of two distinct primes.

Original entry on oeis.org

275, 3157, 3368, 16839, 17050, 19932, 161083, 161294, 164176, 177858, 371325, 371536, 374418, 388100, 532344, 1419889, 1420100, 1422982, 1436664, 1580908, 1791150, 2476131, 2476342, 2479224, 2492906, 2637150, 2847392, 3895956
Offset: 1

Views

Author

Jonathan Vos Post, Aug 06 2007

Keywords

Comments

This is to 5th powers as A120398 is to cubes and A130873 is to 4th powers.

Examples

			a(1) = prime(1)^5 + prime(2)^5 = 2^5 + 3^5 = 32 + 243 = 275.
		

Crossrefs

Programs

  • Mathematica
    Select[Sort[ Flatten[Table[Prime[n]^5 + Prime[k]^5, {n, 15}, {k, n - 1}]]], # <= Prime[15^5] &]

A132215 Numbers that are sums of eighth powers of two distinct primes.

Original entry on oeis.org

6817, 390881, 397186, 5765057, 5771362, 6155426, 214359137, 214365442, 214749506, 220123682, 815730977, 815737282, 816121346, 821495522, 1030089602, 6975757697, 6975764002, 6976148066, 6981522242, 7190116322, 7791488162
Offset: 1

Views

Author

Jonathan Vos Post, Aug 13 2007

Keywords

Comments

This is to 8th powers as A132214 is to 7th powers, A130555 is to 6th powers, A130292 is to fifth powers, A130873 is to 4th powers and A120398 is to cubes. These CAN be prime, as the polynomial x^8 + y^8 is irreducible over Z, as seen in A132216. The first such example is a(11) = A132216(1) = 2^8 + 13^8 = 256 + 815730721 = 815730977, which is prime.
A subset of A003380. - R. J. Mathar, May 11 2008

Examples

			a(1) = 2^8 + 3^8 = 256 + 6561 = 6817 = 17 * 401.
		

Crossrefs

Programs

  • Mathematica
    Select[Sort[ Flatten[Table[Prime[n]^8 + Prime[k]^8, {n, 15}, {k, n - 1}]]], # <= Prime[15^8] &]
    Total/@Subsets[Prime[Range[10]]^8,{2}]//Sort (* Harvey P. Dale, Jun 27 2017 *)

Formula

{A001016(A000040(i)) + A001016(A000040(j)) for i > j}.

A132216 Primes that are sums of eighth powers of two distinct primes.

Original entry on oeis.org

815730977, 124097929967680577, 6115597639891380737, 144086718355753024097, 524320466699664691937, 3377940044732998170977, 10094089678769799935777, 30706777728209453204417, 58310148000746221725857
Offset: 1

Views

Author

Jonathan Vos Post, Aug 13 2007

Keywords

Comments

These primes exist because the polynomial x^8 + y^8 is irreducible over Z. Note that 2^8 + n^8 can be prime for composite n beginning 21, 55, 69, 77, 87, 117.

Examples

			a(1) = 2^8 + 13^8 = 256 + 815730721 = 815730977, which is prime.
a(2) = 2^8 + 137^8 = 124097929967680577, which is prime.
a(3) = 2^8 + 223^8 = 6115597639891380737, which is prime.
a(4) = 2^8 + 331^8 = 144086718355753024097, which is prime.
a(5) = 2^8 + 389^8 = 524320466699664691937, which is prime.
a(6) = 2^8 + 491^8 = 3377940044732998170977, which is prime.
a(7) = 2^8 + 563^8 = 10094089678769799935777, which is prime.
		

Crossrefs

Formula

Primes in A132215. {A001016(A000040(i)) + A001016(A000040(j)) for i > j and are elements of A000040}.

Extensions

More terms from Jon E. Schoenfield, Jul 16 2010

A192926 Sums of two or more distinct prime cubes.

Original entry on oeis.org

35, 133, 152, 160, 351, 370, 378, 468, 476, 495, 503, 1339, 1358, 1366, 1456, 1464, 1483, 1491, 1674, 1682, 1701, 1709, 1799, 1807, 1826, 1834, 2205, 2224, 2232, 2322, 2330, 2349, 2357, 2540, 2548, 2567, 2575, 2665, 2673, 2692, 2700, 3528
Offset: 1

Views

Author

Jonathan Vos Post, Jul 12 2011

Keywords

Comments

This is to cubes of primes as A192336 is to squares of integers.

Examples

			2^3 + 3^3 + 7^3 = 8 + 27 + 343 = 378 is in this sequence.
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Jul 14 2011

A291339 Primes p such that p^3*q^3 + p^3 + q^3 is prime, where q is the next prime after p.

Original entry on oeis.org

2, 3, 7, 19, 37, 47, 83, 89, 107, 137, 181, 251, 257, 349, 379, 569, 631, 653, 677, 691, 797, 823, 839, 863, 883, 919, 1009, 1021, 1223, 1229, 1361, 1423, 1571, 1609, 1831, 1873, 1907, 1993, 2053, 2113, 2207, 2239, 2293, 2309, 2579, 2833, 3137, 3319, 3593, 3673
Offset: 1

Views

Author

K. D. Bajpai, Aug 22 2017

Keywords

Examples

			a(2) = 3 is prime; 5 is the next prime: 3^3*5^3 + 3^3 + 5^3 = 27*125 + 27 + 125 = 3527 that is a prime.
a(3) = 7 is prime; 11 is the next prime: 7^3*11^3 + 7^3 + 11^3 = 343*1331 + 343 + 1331 = 458207 that is a prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo (5000) | IsPrime(p^3*q^3+p^3+q^3)];
    
  • Maple
    select(p -> andmap(isprime,[p,(p^3*nextprime(p)^3+p^3+nextprime(p)^3)]), [seq(p, p=1..10^4)]);
  • Mathematica
    Prime@Select[Range[1000], PrimeQ[Prime[#]^3*Prime[# + 1]^3 + Prime[#]^3 + Prime[# + 1]^3] &]
    Select[Partition[Prime[Range[600]],2,1],PrimeQ[Times@@(#^3)+Total[#^3]]&][[;;,1]] (* Harvey P. Dale, Apr 28 2025 *)
  • PARI
    is(n) = my(q=nextprime(n+1)); ispseudoprime(n^3*q^3+n^3+q^3)
    forprime(p=1, 3700, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Aug 22 2017
    
  • PARI
    list(lim)=my(v=List(),p=2,p3=8,q3); forprime(q=3,nextprime(lim\1+1), q3=q^3; if(isprime(p3*q3+p3+q3), listput(v,p)); p=q; p3=q3); Vec(v) \\ Charles R Greathouse IV, Aug 23 2017
Showing 1-10 of 17 results. Next