A130555
Numbers that are sums of sixth powers of two distinct primes.
Original entry on oeis.org
793, 15689, 16354, 117713, 118378, 133274, 1771625, 1772290, 1787186, 1889210, 4826873, 4827538, 4842434, 4944458, 6598370, 24137633, 24138298, 24153194, 24255218, 25909130, 28964378, 47045945, 47046610, 47061506, 47163530
Offset: 1
a(1) = prime(1)^6 + prime(2)^6 = 2^6 + 3^6 = 64 + 729 = 793 = 13 * 61.
-
Select[Sort[Flatten[Table[Prime[n]^6 + Prime[k]^6, {n, 15}, {k, n - 1}]]], # <= Prime[15^6] &]
Union[Total/@Subsets[Prime[Range[20]]^6,{2}]] (* Harvey P. Dale, Mar 11 2012 *)
A132214
Numbers that are sums of seventh powers of two distinct primes.
Original entry on oeis.org
2315, 78253, 80312, 823671, 825730, 901668, 19487299, 19489358, 19565296, 20310714, 62748645, 62750704, 62826642, 63572060, 82235688, 410338801, 410340860, 410416798, 411162216, 429825844, 473087190, 893871867, 893873926
Offset: 1
a(1) = 2^7 + 3^7 = 2315 = 5 * 463.
-
P:= select(isprime, [2,seq(i,i=3..100,2)]): nP:= nops(P):
N:= 2^7 + P[-1]^7:
sort(convert(select(`<=`, {seq(seq(P[i]^7+P[j]^7,j=i+1..nP),i=1..nP-1)},N),list)); # Robert Israel, Jul 01 2024
-
Select[Sort[ Flatten[Table[Prime[n]^7 + Prime[k]^7, {n, 15}, {k, n - 1}]]], # <= Prime[15^7] &]
Union[Total/@(Subsets[Prime[Range[10]],{2}]^7)] (* Harvey P. Dale, Jan 03 2012 *)
A132215
Numbers that are sums of eighth powers of two distinct primes.
Original entry on oeis.org
6817, 390881, 397186, 5765057, 5771362, 6155426, 214359137, 214365442, 214749506, 220123682, 815730977, 815737282, 816121346, 821495522, 1030089602, 6975757697, 6975764002, 6976148066, 6981522242, 7190116322, 7791488162
Offset: 1
a(1) = 2^8 + 3^8 = 256 + 6561 = 6817 = 17 * 401.
-
Select[Sort[ Flatten[Table[Prime[n]^8 + Prime[k]^8, {n, 15}, {k, n - 1}]]], # <= Prime[15^8] &]
Total/@Subsets[Prime[Range[10]]^8,{2}]//Sort (* Harvey P. Dale, Jun 27 2017 *)
Showing 1-3 of 3 results.
Comments