A193411 Primes which are sums of two or more distinct 4th powers of primes.
97, 641, 2417, 14657, 17123, 17683, 43283, 46309, 83537, 112163, 126739, 129221, 129749, 130337, 145043, 145603, 173539, 176021, 176549, 214483, 216259, 229189, 242419, 243109, 244901, 257141, 279857, 280547, 294563, 295123, 297589, 310819, 325541, 365779
Offset: 1
Keywords
Examples
a(5) = 17123 = 3^4 + 7^4 + 11^4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 5*10^5: # for all terms <= N S1:= {}: S2:= {}: p:= 1: R:= {}: do p:= nextprime(p); if p^4 > N then break fi; s:= p^4; nS2:= select(`<=`,map(`+`,S1 union S2, s), N); S2:= S2 union nS2; S1:= S1 union {s}; R:= R union select(isprime, nS2); od: sort(convert(R,list)); # Robert Israel, Apr 27 2020
-
Mathematica
nn = 9; Select[Sort[Table[Dot[IntegerDigits[i, 2, nn], Prime[Range[nn]]^4], {i, 2^nn-1}]], # < Prime[nn-1]^4 + Prime[nn]^4 && PrimeQ[#] &] (* T. D. Noe, Jul 27 2011 *)
-
PARI
list(lim)=my(v=List(), t1, t2, t3, t4, t5, t6, t7); forprime(p=2, (lim-16)^(1/4), forprime(q=2, min(p-1, (lim-p^4)^(1/4)), t1=p^4+q^4; if(isprime(t1), listput(v, t1)); forprime(r=2, min(q-1, (lim-t1)^(1/4)), t2=t1+r^4; if(isprime(t2), listput(v, t2)); forprime(s=2, min(r-1, (lim-t2)^(1/4)), t3=t2+s^4; if(isprime(t3), listput(v, t3)); forprime(t=2, min(s-1, (lim-t3)^(1/4)), t4=t3+t^4; if(isprime(t4), listput(v, t4)); forprime(u=2, min(t-1, (lim-t4)^(1/4)), t5=t4+u^4; if(isprime(t5), listput(v, t5)); forprime(w=2, min(u-1, (lim-t5)^(1/4)), t6=t5+w^4; if(isprime(t6), listput(v, t6)); forprime(x=2, min(w-1, (lim-t6)^(1/4)), t7=t6+x^4; if(isprime(t7), listput(v, t7)); if(x>2&&t7+16<=lim&&isprime(t7+16), listput(v, t7+16)))))))))); vecsort(Vec(v), , 8); list(4044955) \\ Charles R Greathouse IV, Jul 27 2011
Extensions
a(7)-a(33) from Charles R Greathouse IV, Jul 25 2011
Comments