A120414 a(0)=0, a(1)=1; thereafter a(n) = ceiling((3/2)^(n-3)*n*(n-1)).
0, 1, 2, 6, 18, 45, 102, 213, 426, 821, 1538, 2820, 5075, 8996, 15743, 27247, 46709, 79405, 133996, 224640, 374400
Offset: 0
References
- G. Berman and K. D. Fryer, Introduction to Combinatorics. Academic Press, NY, 1972, p. 175.
Links
- Vigleik Angeltveit and Brendan D. McKay, R(5,5) <= 48, arXiv:1703.08768 [math.CO], 2017.
- Marcelo Campos, Simon Griffiths, Robert Morris, and Julian Sahasrabudhe, An exponential improvement for diagonal Ramsey, arXiv preprint arXiv:2303.09521 [math.CO], 2023.
- R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math., 7 (1955), 1-7.
- Eric Weisstein's World of Mathematics, Ramsey Number
- Wikipedia, Ramsey's theorem.
Programs
-
Mathematica
Join[{0,1},Table[Ceiling[(3/2)^(n-3) n(n-1)],{n,2,20}]] (* Harvey P. Dale, Aug 29 2024 *)
Extensions
Edited by N. J. A. Sloane, Sep 16 2006
This was initially submitted as a conjecture for the Ramsey number R(n,n). I have replaced the definition with the exct formula that was used. - N. J. A. Sloane, Nov 05 2023
Comments