A120451 Number of ways a prime number p can be expressed as 2*(p1-p2) + 3*p3, where p1, p2, p3 are primes or 1, less than or equal to p.
0, 3, 4, 7, 9, 12, 13, 16, 18, 20, 23, 30, 32, 32, 33, 42, 43, 51, 50, 57, 64, 61, 69, 83, 84, 93, 89, 92, 110, 115, 114, 123, 133, 133, 153, 143, 157, 154, 163, 176, 179, 211, 197, 220, 233, 216, 227, 230, 233, 269, 278, 268, 310, 274, 314
Offset: 1
Keywords
Examples
a(12)=30 because 37 (the 12th prime) can be expressed as 2*(1 - 2) + 3*13 OR 2*(1 - 11) + 3*19 OR 2*(1 - 17) + 3*23 OR 2*(1 - 29) + 3*31 OR 2*(2 - 3) + 3*13 OR 2*(3 - 1) + 3*11 OR 2*(3 - 13) + 3*19 OR 2*(3 - 19) + 3*23 OR 2*(3 - 31) + 3*31 OR 2*(5 - 3) + 3*11 OR 2*(7 - 5) + 3*11 OR 2*(7 - 17) + 3*19 OR 2*(7 - 23) + 3*23 OR 2*(11 - 3) + 3*7 OR 2*(13 - 2) + 3*5 OR 2*(13 - 5) + 3*7 OR 2*(13 - 11) + 3*11 OR 2*(13 - 23) + 3*19 OR 2*(13 - 29) + 3*23 OR 2*(17 - 3) + 3*3 OR 2*(19 - 2) + 3*1 OR 2*(19 - 5) + 3*3 OR 2*(19 - 11) + 3*7 OR 2*(19 - 17) + 3*11 OR 2*(19 - 29) + 3*19 OR 2*(31 - 17) + 3*3 OR 2*(31 - 23) + 3*7 OR 2*(31 - 29) + 3*11 OR 2*(37 - 23) + 3*3 OR 2*(37 - 29) + 3*7.
Programs
-
PARI
a(n) = {my(vp = concat(1, primes(n)), nb=0, p=prime(n), p1, p2, p3); for (i=1, #vp, p1 = vp[i]; for (j=1, #vp, p2 = vp[j]; for (k=1, #vp, p3 = vp[k]; if (2*(p1-p2) + 3*p3 == p, nb++);););); nb;} \\ Michel Marcus, Jan 26 2021
Comments