A120475 a(n) = Sum_{m=1..n} A000045(m)*(A004001(m+1) - 2*A004001(m) + A004001(m-1)).
-1, 0, -2, 1, 1, -7, -7, 14, 14, 14, -75, 69, -164, -164, -164, 823, 823, 823, 823, -5942, 5004, 5004, -23653, 22715, -52310, -52310, 144108, -173703, -173703, -173703, -173703, 2004606, 2004606, 2004606, 2004606, 2004606, -22153211, 16934958, 16934958, 16934958, -148645183, 119269113
Offset: 1
Keywords
Programs
-
Maple
A000045 := proc(n) option remember ; combinat[fibonacci](n) ; end: A004001 := proc(n) option remember ; if n <= 0 then 0 ; elif n <= 2 then 1; else A004001(A004001(n-1))+A004001(n-A004001(n-1)) ; fi ; end: A120475 := proc(n) add( A000045(m)*(A004001(m+1)-2*A004001(m)+A004001(m-1)),m=1..n) ; end: seq(A120475(n),n=1..80) ; # R. J. Mathar, Sep 18 2007
-
Mathematica
Conway[0] = 0; Conway[1] = Conway[2] = 1; Conway[n_Integer?Positive] := Conway[n] = Conway[Conway[n - 1]] + Conway[n - Conway[n - 1]]; a[n_] := Fibonacci[n]*(Conway[n + 1] - 2*Conway[n] + Conway[n - 1]); Table[Sum[a[m], {m, 1, n}], {n, 1, 30}]
Extensions
Edited by N. J. A. Sloane, Aug 14 2006
More terms from R. J. Mathar, Sep 18 2007