A120476 Triangle read by rows: a(n,m)=(2*n-1)*(n-m)*(n+m+1)/2, where n is the column and m the row index.
1, 3, -2, 6, -5, -9, 10, -9, -21, -20, 15, -14, -36, -45, -35, 21, -20, -54, -75, -77, -54, 28, -27, -75, -110, -126, -117, -77, 36, -35, -99, -150, -182, -189, -165, -104, 45, -44, -126, -195, -245, -270, -264, -221, -135, 55, -54, -156, -245, -315, -360, -374, -351, -285, -170
Offset: 0
Examples
1, 3, -2, 6, -5, -9, 10, -9, -21,-20, 15, -14,-36,-45, -35
References
- J. W. S. Rayleigh, The Theory of Sound, volume 2, page 237,Dover, New York,1945
Crossrefs
Cf. A006472.
Programs
-
Mathematica
a = Table[Table[(m + 1)*(2*n - 1)*(n - m)*(n + m + 1)/(2*(m + 1)), {n, 0, m - 1}], {m, 1, 10}] Flatten[a]
Formula
Row sums: sum_{n=0..m-1} a(n,m) = -m(m+1)(3m^2-5m-4)/12. [From R. J. Mathar, Jan 15 2009]
Extensions
Edited by N. J. A. Sloane, Oct 01 2006
Comments