cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120487 Denominator of 1^n/n + 2^n/(n-1) + 3^n/(n-2) + ... + (n-1)^n/2 + n^n/1.

Original entry on oeis.org

1, 2, 3, 12, 5, 20, 35, 280, 63, 2520, 385, 27720, 6435, 8008, 45045, 720720, 85085, 4084080, 969969, 739024, 29393, 5173168, 7436429, 356948592, 42902475, 2974571600, 717084225, 80313433200, 215656441, 2329089562800, 4512611027925
Offset: 1

Views

Author

Alexander Adamchuk, Jul 22 2006

Keywords

Comments

Numerator is A115071(n).
Also a(n) is denominator of (n+1)^(n+1) * (H(n+1) - 1), where H(k) is harmonic number, H(k) = Sum_{i=1..k} 1/i = A001008(k)/A002805(k). - Alexander Adamchuk, Jan 02 2007

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[k^n/(n-k+1),{k,1,n}],{n,1,50}]]
    Table[ Denominator[ (n+1)^(n+1) * Sum[ 1/i,{i,2,n+1} ] ], {n,1,40} ] (* Alexander Adamchuk, Jan 02 2007 *)

Formula

a(n) = denominator(Sum_{k=1..n} k^n/(n-k+1)).
a(n) = denominator((n+1)^(n+1) * Sum_{i=2..n+1} 1/i). - Alexander Adamchuk, Jan 02 2007