A120487 Denominator of 1^n/n + 2^n/(n-1) + 3^n/(n-2) + ... + (n-1)^n/2 + n^n/1.
1, 2, 3, 12, 5, 20, 35, 280, 63, 2520, 385, 27720, 6435, 8008, 45045, 720720, 85085, 4084080, 969969, 739024, 29393, 5173168, 7436429, 356948592, 42902475, 2974571600, 717084225, 80313433200, 215656441, 2329089562800, 4512611027925
Offset: 1
Programs
-
Mathematica
Denominator[Table[Sum[k^n/(n-k+1),{k,1,n}],{n,1,50}]] Table[ Denominator[ (n+1)^(n+1) * Sum[ 1/i,{i,2,n+1} ] ], {n,1,40} ] (* Alexander Adamchuk, Jan 02 2007 *)
Formula
a(n) = denominator(Sum_{k=1..n} k^n/(n-k+1)).
a(n) = denominator((n+1)^(n+1) * Sum_{i=2..n+1} 1/i). - Alexander Adamchuk, Jan 02 2007
Comments