cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120498 Numbers C from the ABC conjecture.

Original entry on oeis.org

9, 32, 49, 64, 81, 125, 128, 225, 243, 245, 250, 256, 289, 343, 375, 512, 513, 539, 625, 676, 729, 961, 968, 1025, 1029, 1216, 1331, 1369, 1587, 1681, 2048, 2057, 2187, 2197, 2304, 2312, 2401, 2500, 2673, 3025, 3072, 3125, 3136, 3211, 3481, 3584, 3773, 3888
Offset: 1

Views

Author

R. J. Mathar, Aug 06 2006

Keywords

Comments

C-values are not repeated: (A,B,C)=(13,243,256) and (A,B,C)=(81,175,256) are only represented once, by 256, in the list, for example.

Examples

			For A=1, B=63 and C=64, C=64 is in the list because 1 and 63 are coprime,
because the set of prime factors of 1, 63=3^2*7 and 64=2^6 has the product
of prime factors 3*2*7=42 and this product is smaller than 64.
		

Crossrefs

Cf. A130510 (values of c in the list of "abc-hits").

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; isABC[a_, b_, c_] := (If[a + b != c || GCD[a, b] != 1, Return[0]]; r = rad[a*b*c]; If[r < c, Return[1], Return[0]]); isC[c_] := (For[a = 1, a <= Floor[c/2], a++, If[isABC[a, c - a, c] != 0, Return[1]]]; Return[0]); Select[Range[4000], isC[#] == 1 & ] (* Jean-François Alcover, Jun 24 2013, translated and adapted from Pari *)
  • PARI
    isABC(a,b,c)={ a+b==c && gcd(a,b)==1 && A007947(a*b*c)M. F. Hasler, Jan 16 2015
    isC(c)={ for(a=1, floor(c/2), if( isABC(a,c-a,c), return(1) )); return(0); }
    { for(n=1,6000, if( isC(n), print1(n,","))) }
    
  • PARI
    is_A120498(c)={for(a=1,c\2, gcd(a,c-a)==1 && A007947(a*(c-a)*c)M. F. Hasler, Jan 16 2015
    
  • Python
    from itertools import count, islice
    from math import prod, gcd
    from sympy import primefactors
    def A120498_gen(startvalue=1): # generator of terms >= startvalue
        for c in count(max(startvalue,1)):
            pc = set(primefactors(c))
            for a in range(1,(c>>1)+1):
                b = c-a
                if gcd(a,b)==1 and c>prod(set(primefactors(a))|set(primefactors(b))|pc):
                    yield c
                    break
    A120498_list = list(islice(A120498_gen(),30)) # Chai Wah Wu, Oct 19 2023

Formula

A+B=C; gcd(A,B)=1; A007947(A*B*C) < C.