A120525 First differences of successive generalized meta-Fibonacci numbers A120503.
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1
Offset: 1
Keywords
Links
- C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]
- C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences
Formula
d(n) = 0 if node n is an inner node, or 1 if node n is a leaf.
g.f.: z (1 + z^1 ( (1 - z^(2 * [1])) / (1 - z^[1]) + z^3 * (1 - z^(3 * [i]))/(1 - z^[1]) ( (1 - z^(2 * [2])) / (1 - z^[2]) + z^9 * (1 - z^(3 * [2]))/(1 - z^[2]) (..., where [i] = (3^i - 1) / 2.
g.f.: D(z) = z * prod((1 - z^(3 * [i])) / (1 - z^[i])), i=1..infinity), where [i] = (3^i - 1) / 2.