cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120533 Primes having a prime number of digits.

Original entry on oeis.org

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Cino Hilliard, Aug 06 2006

Keywords

Comments

Before the 20th century, this sequence would have contained the numbers 1,2,3,5,7; see A008578.
There are a total of 8527 terms for primes with 2, 3, or 5 digits, and a total of 594608 terms if primes with 7 digits are also included. - Harvey P. Dale, Nov 02 2020

Examples

			10007 is a 5-digit prime and so belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[Range[PrimePi[10^(p-1)]+1,PrimePi[10^p]]],{p,Prime[Range[ 3]]}]//Flatten (* Harvey P. Dale, Nov 02 2020 *)
  • PARI
    g(n) = forprime(x=11,n,if(isprime(length(Str(x))),print1(x",")))
    
  • PARI
    forprime(p=2,5,forprime(q=10^(p-1),10^p,print1(q", "))) \\ Charles R Greathouse IV, Oct 04 2011
    
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def agen(): # generator of terms
        d = 2
        while True:
            yield from (i for i in range(10**(d-1)+1, 10**d, 2) if isprime(i))
            d = nextprime(d)
    print(list(islice(agen(), 57))) # Michael S. Branicky, Dec 27 2023
    
  • Python
    from sympy import primepi, primerange
    def A272441(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(min(x,(1<Chai Wah Wu, Feb 03 2025

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 21 2007