A120537 Sum of all matrix elements of n X n matrix M[i,j] = Lucas[i+j-1], (i,j = 1..n), where Lucas[n] = A000032[n] = Fibonacci[n-1] + Fibonacci[n+1].
1, 11, 44, 145, 431, 1216, 3329, 8955, 23836, 63041, 166079, 436480, 1145441, 3003211, 7869644, 20614545, 53988271, 141373376, 370169249, 969194875, 2537513276, 6643503361, 17393253119, 45536670720, 119217430081
Offset: 1
Keywords
Examples
Matrix begins: 1 3 4 7 11... 3 4 7 11 18... 4 7 11 18 29... 7 11 18 29 47... 11 18 29 47 76... ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
Table[Sum[Sum[Fibonacci[i+j-2]+Fibonacci[i+j],{i,1,n}],{j,1,n}],{n,1,70}] Table[(Fibonacci[2n+2]+Fibonacci[2n+4])-2(Fibonacci[n+2]+Fibonacci[n+4])+4,{n,1,70}]
Formula
a(n) = Sum[ Sum[ Fibonacci[i+j-2] + Fibonacci[i+j],{i,1,n}],{j,1,n}]. a(n) = Lucas[2n+3] - 2*Lucas[n+3] + 4, where Lucas[k] = Fibonacci[k-1] + Fibonacci[k+1].
G.f.:(1+x^3-4*x^2+6*x)/((x-1)*(x^2+x-1)*(x^2-3*x+1)) [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009]
Comments