A120572 Smallest area of any triangle with integer sides a <= b <= c and inradius n.
6, 24, 48, 84, 150, 192, 294, 336, 432, 540, 726, 756, 1014, 1134, 1170, 1344, 1734, 1710, 2166, 2100, 2310, 2640, 3174, 3000, 3750, 4056, 3888, 4116, 5046, 4680, 5766, 5376, 5808, 6936, 6510, 6804, 8214, 8664, 8112, 8400, 10086, 9240, 11094, 10164
Offset: 1
Keywords
Examples
a(4) = 84 because, for (a,b,c) = (13,14,15) => A = sqrt(21(21-13)(21-14)(21-15)) = 84 and r = 84/21 = 4.
Links
- David W. Wilson, Table of n, a(n) for n = 1..10000
- Mohammad K. Azarian, Solution of problem 125: Circumradius and Inradius, Math Horizons, Vol. 16, No. 2 (Nov. 2008), p. 32.
Crossrefs
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Programs
-
Maple
T:=array(1..500):nn:=70: for n from 1 to 16 do:k:=0:ii:=0:for a from 1 to nn do: for b from a to nn do: for c from b to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then s:=sqrt(x) :if s=floor(s) and s/p = n then k:=k+1:T[k]:=s: else fi:fi:od:od:od: L := [seq(T[i], i=1..k)]:A:=sort(L, `<`): w:=A[1]: printf ( "%d %d \n", n, w):od: # Michel Lagneau, Mar 02 2012
Comments