A120593 G.f. satisfies: 5*A(x) = 4 + x + A(x)^4, starting with [1,1,6].
1, 1, 6, 76, 1201, 21252, 402892, 8001412, 164321982, 3461110532, 74358814838, 1623152780808, 35897318940028, 802620009567628, 18112759482614328, 412020809942451504, 9437537418826749369, 217486633306640519124
Offset: 0
Keywords
Examples
A(x) = 1 + x + 6*x^2 + 76*x^3 + 1201*x^4 + 21252*x^5 +... A(x)^4 = 1 + 4*x + 30*x^2 + 380*x^3 + 6005*x^4 + 106260*x^5 +...
Programs
-
Mathematica
CoefficientList[1 + InverseSeries[Series[1+5*x - (1+x)^4, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
-
PARI
{a(n)=local(A=1+x+6*x^2+x*O(x^n));for(i=0,n,A=A-5*A+4+x+A^4);polcoeff(A,n)}
Formula
G.f. satisfies:
(1) A(x) = 1 + Series_Reversion(1+5*x - (1+x)^4).
(2) A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (4+x)^(3*n+1)/5^(4*n+1), by Lagrange Inversion.
(3) A(x) = F(x/A(x)) and F(x) = A(x*F(x)) where F(x) = (4 + F(x)^4)/(5-x) is the g.f. of A244856. - Paul D. Hanna, Jul 09 2014
a(n) ~ 2^(-7/3 + 3*n) * (-32 + 15*10^(1/3))^(1/2 - n) / (5^(1/3) * n^(3/2) * sqrt(3*Pi)). - Vaclav Kotesovec, Nov 28 2017
Comments