A120593
G.f. satisfies: 5*A(x) = 4 + x + A(x)^4, starting with [1,1,6].
Original entry on oeis.org
1, 1, 6, 76, 1201, 21252, 402892, 8001412, 164321982, 3461110532, 74358814838, 1623152780808, 35897318940028, 802620009567628, 18112759482614328, 412020809942451504, 9437537418826749369, 217486633306640519124
Offset: 0
A(x) = 1 + x + 6*x^2 + 76*x^3 + 1201*x^4 + 21252*x^5 +...
A(x)^4 = 1 + 4*x + 30*x^2 + 380*x^3 + 6005*x^4 + 106260*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[1+5*x - (1+x)^4, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
-
{a(n)=local(A=1+x+6*x^2+x*O(x^n));for(i=0,n,A=A-5*A+4+x+A^4);polcoeff(A,n)}
A120595
G.f. satisfies: 13*A(x) = 12 + 27*x + A(x)^4, starting with [1,3,6].
Original entry on oeis.org
1, 3, 6, 36, 249, 1932, 16044, 139500, 1253934, 11558316, 108658902, 1037800920, 10041891132, 98230257636, 969814634424, 9651213968784, 96710160474513, 974967422602428, 9881687141571732, 100632995795535588
Offset: 0
A(x) = 1 + 3*x + 6*x^2 + 36*x^3 + 249*x^4 + 1932*x^5 +...
A(x)^4 = 1 + 12*x + 78*x^2 + 468*x^3 + 3237*x^4 + 25116*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+13*x - (1+x)^4)/27, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 27 2017 *)
-
{a(n)=local(A=1+3*x+6*x^2+x*O(x^n));for(i=0,n,A=A+(-13*A+12+27*x+A^4)/9);polcoeff(A,n)}
A245009
G.f. satisfies: A(x) = (7 + A(x)^4) / (8 - 8*x).
Original entry on oeis.org
1, 2, 10, 88, 978, 12200, 163156, 2286448, 33138874, 492657384, 7470940300, 115115319376, 1797128902132, 28364816229008, 451870965523368, 7256283996155360, 117333885356923274, 1908844190372949224, 31221135850863938268, 513100005743085437328, 8468653781083527106012, 140314257925457275837488
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 88*x^3 + 978*x^4 + 12200*x^5 +...
Compare A(x)^4 to 8*(1-x)*A(x):
A(x)^4 = 1 + 8*x + 64*x^2 + 624*x^3 + 7120*x^4 + 89776*x^5 +...
8*(1-x)*A(x) = 8 + 8*x + 64*x^2 + 624*x^3 + 7120*x^4 + 89776*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+8*x - (1+x)^4)/(8*(1+x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 27 2017 *)
-
{a(n)=polcoeff(1 + serreverse((1+8*x - (1+x)^4)/(8*(1+x +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=[1], Ax=1+2*x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^4 - 8*(1-x)*Ax )/4 )[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments