A120612 For n>1, a(n) = 2*a(n-1) + 15*a(n-2); a(0)=1, a(1)=1.
1, 1, 17, 49, 353, 1441, 8177, 37969, 198593, 966721, 4912337, 24325489, 122336033, 609554401, 3054149297, 15251614609, 76315468673, 381405156481, 1907542343057, 9536162033329, 47685459212513, 238413348924961, 1192108586037617, 5960417405949649
Offset: 0
Examples
a(4) = 353 = 2*49 + 15*17 = 2*a(3) + 15*a(2).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (2,15).
Programs
-
Mathematica
Table[(5^n+(-1)^n*3^n)/2,{n,1,30}] (* Alexander Adamchuk, Aug 31 2006 *) a[n_] := (5^n + (-3)^n)/2; Array[a, 24, 0] (* Or *) CoefficientList[Series[(1 + 15 x)/(1 - 2 x - 15 x^2), {x, 0, 23}], x] (* Or *) LinearRecurrence[{2, 15}, {1, 1}, 25] (* Or *) Table[ MatrixPower[{{1, 2}, {8, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Sep 18 2013 *)
-
PARI
a(n)=([1,4; 4,1]^n)[1,1] \\ Charles R Greathouse IV, Oct 16 2013
-
PARI
concat(1, Vec((15*x+1)/(-15*x^2-2*x+1) + O(x^100))) \\ Colin Barker, Mar 12 2014
-
PARI
a(n) = ( 5^n + (-1)^n * 3^n ) / 2 \\ Charles R Greathouse IV, May 18 2015
Formula
Let M = the 2 X 2 matrix [1,4; 4,1], then a(n) = M^n * [1,0], left term.
From Alexander Adamchuk, Aug 31 2006: (Start)
a(n) = ( 5^n + (-1)^n * 3^n ) / 2.
a(2n+1) = A005059(2n+1).
a(2n) = A081186(2n). (End)
a(n) = Sum_{k=0..n} A098158(n,k)*16^(n-k). - Philippe Deléham, Dec 26 2007
If p(1)=1, and p(i)=16, (i > 1), and if A is Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1), (i <= j), A(i,j)=-1, (i = j+1), and A(i,j)=0 otherwise. Then, for n >= 1, a(n)=det A. - Milan Janjic, Apr 29 2010
Extensions
More terms from Alexander Adamchuk, Aug 31 2006
Entry revised by Philippe Deléham, Dec 02 2008
More terms from Colin Barker, Mar 12 2014
Comments