cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120672 a(n) = 2 * A285917(n) for n >=2, a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 2, 12, 22, 60, 104, 252, 438, 1020, 1792, 4092, 7264, 16380, 29332, 65532, 118198, 262140, 475664, 1048572, 1912392, 4194300, 7683172, 16777212, 30850272, 67108860, 123817124, 268435452, 496754308, 1073741820, 1992366124, 4294967292, 7988854198
Offset: 0

Views

Author

Thomas Wieder, Jun 24 2006

Keywords

Comments

Previous name was: Consider a set A containing at least n-1 elements of sort "a" and a set B containing at least n-1 elements of sort "b". From set A we take i elements, from set B we take (n-i) elements such that i + (n-i) = n. Then we distribute these n elements in two urns L (left) and R (right). The order of selection among the two sorts counts. Equivalently we can say: Then we form two sequences L and R from these n elements. The position of the sort of the elements within the sequences counts. Furthermore, the occupations of the urns are permuted. In other words, the order of the sequences L and R is swapped from L|R to R|L.
A028399(n) = 2*2^n - 4 with n=1,2,3,... is an upper limit for a(n) because Sum_{i=1..n-1} 2*n!/(i!*(n-i)!) = 2*2^n - 4. a(n) follows from all distinct ordered 2-tuples of positive integers whose elements sum to n. See the first Maple program below.

Examples

			For n=3 we have a(n=3)=12 configurations [L|R] and [R|L]: [aaa|b], [b|aaa], [baa|a], [a|baa], [aba|a], [a|aba], [aab|a], [a|aab] and [bbb|a], [a|bbb], [abb|b], [b|abb], [bab|b], [b|bab], [bba|b], [b|bba].
		

Crossrefs

Programs

  • Maple
    A120672 := proc(n::integer) local i,k, cmpstnlst,cmpstn,NumberOfParts,liste, NumberOfDifferentParts,Result; k:=2; Result := 0; cmpstnlst := composition(n,k); NumberOfParts := 0; NumberOfDifferentParts := 0; for i from 1 to nops(cmpstnlst) do cmpstn := cmpstnlst[i]; NumberOfParts := nops(cmpstn); if NumberOfParts > 0 then liste := convert(cmpstn,multiset); else liste := NULL; fi; if liste <> NULL then NumberOfDifferentParts := nops(liste); else NumberOfDifferentParts := 0; fi; Result := Result + n!/mul(op(j,cmpstn)!, j=1..NumberOfParts)*(NumberOfParts!/ mul(op(2,op(j,liste))!, j=1..NumberOfDifferentParts)); od; print(Result); end proc;
    A120672 := proc(n) local i,Term,Result; Result:=0; for i from 1 to n-1 do Term:=n!/(i!*(n-i)!); if i <> n-i then Term:=2*Term; fi; Result:=Result+Term; end do; print(Result); end proc;
  • Mathematica
    a[n_] := If[n == 0, 0, 2^(n+1) - 4 - Sum[Binomial[n, Quotient[k, 2]]* (-1)^(n-k), {k, 0, n}]];
    Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Apr 02 2024, after R. J. Mathar's formula *)

Formula

For the number a(n) of such [L|R] configurations we have a(n) = n!*Sum_{i=1..n-1} delta2(i,n-i)/(i!*(n-i)!) where delta2(n,n-i) = 2 if i <> (n-i) and 1 if i = (n-i).
a(n) = A028399(n) - A126869(n), n > 0. - R. J. Mathar, Aug 07 2008

Extensions

Simpler name referring to A285917 from Joerg Arndt, Jun 25 2019