A120672 a(n) = 2 * A285917(n) for n >=2, a(0) = a(1) = 0.
0, 0, 2, 12, 22, 60, 104, 252, 438, 1020, 1792, 4092, 7264, 16380, 29332, 65532, 118198, 262140, 475664, 1048572, 1912392, 4194300, 7683172, 16777212, 30850272, 67108860, 123817124, 268435452, 496754308, 1073741820, 1992366124, 4294967292, 7988854198
Offset: 0
Keywords
Examples
For n=3 we have a(n=3)=12 configurations [L|R] and [R|L]: [aaa|b], [b|aaa], [baa|a], [a|baa], [aba|a], [a|aba], [aab|a], [a|aab] and [bbb|a], [a|bbb], [abb|b], [b|abb], [bab|b], [b|bab], [bba|b], [b|bba].
Programs
-
Maple
A120672 := proc(n::integer) local i,k, cmpstnlst,cmpstn,NumberOfParts,liste, NumberOfDifferentParts,Result; k:=2; Result := 0; cmpstnlst := composition(n,k); NumberOfParts := 0; NumberOfDifferentParts := 0; for i from 1 to nops(cmpstnlst) do cmpstn := cmpstnlst[i]; NumberOfParts := nops(cmpstn); if NumberOfParts > 0 then liste := convert(cmpstn,multiset); else liste := NULL; fi; if liste <> NULL then NumberOfDifferentParts := nops(liste); else NumberOfDifferentParts := 0; fi; Result := Result + n!/mul(op(j,cmpstn)!, j=1..NumberOfParts)*(NumberOfParts!/ mul(op(2,op(j,liste))!, j=1..NumberOfDifferentParts)); od; print(Result); end proc; A120672 := proc(n) local i,Term,Result; Result:=0; for i from 1 to n-1 do Term:=n!/(i!*(n-i)!); if i <> n-i then Term:=2*Term; fi; Result:=Result+Term; end do; print(Result); end proc;
-
Mathematica
a[n_] := If[n == 0, 0, 2^(n+1) - 4 - Sum[Binomial[n, Quotient[k, 2]]* (-1)^(n-k), {k, 0, n}]]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Apr 02 2024, after R. J. Mathar's formula *)
Formula
For the number a(n) of such [L|R] configurations we have a(n) = n!*Sum_{i=1..n-1} delta2(i,n-i)/(i!*(n-i)!) where delta2(n,n-i) = 2 if i <> (n-i) and 1 if i = (n-i).
Extensions
Simpler name referring to A285917 from Joerg Arndt, Jun 25 2019
Comments